1 Метеорологические условия

1.1 Синоптический обзор

Кинематические карты, рис. 1-1, 1-3—1-4, содержат положение циклонов (красный цвет) и антициклонов (синий цвет) за 00 ВСВ каждых суток декады и траектории их перемещения. За барическими объектами закреплен номер, по которому из ниже следующих таблиц можно определить точные координаты и давление в центре объекта в срок 00 ВСВ.

I декада декабря 2023 г.

Японское море

1 декабря над Японским морем сохранялась зимняя муссонная циркуляция: ветры были преимущественно северо-западные до 9–14 м/с, волнение – до 2–3 м. В период 2–3 декабря над морем со скоростью 30–40 км/ч проследовал ныряющий циклон с давлением в центре 1012 гПа, обусловивший нарушение зимнего муссона.

4 декабря над севером акватории проследовала ложбина с фронтальным разделом, но усиления ветра и волн не наблюдалось. Следом, 6 декабря на акваторию моря вышел западный циклон глубиной 1000 гПа. Двигаясь на северо-восток со скоростью 40–50 км/ч, он углублялся, 7 числа переместился на юг Сахалина с давлением в центре 984 гПа. В Японском море циклон вызвал усиление ветра до 15–20 м/ч, волнение до 3–4 м.

9 декабря по северной части моря в восточном направлении проследовал циклон с фронтальным разделом, глубиной 1002 гПа. С этим процессом ветер усиливался до 10-15 м/с, волнение развивалось до 2-3 м.

Охотское море

В первой половине декады над северной частью Охотского моря перемещались неглубокие циклоны, не вызывающие существенного усиления ветра. Наиболее глубокий циклон с давлением в центре 998 гПа проследовал над этой частью акватории 4-5 декабря. Он обусловил усиление ветра до 10-15 м/с волнение до 2-3 м.

7 декабря к западной части Охотского моря приблизилась обширная циклоническая система с двумя циклонами. Давление в южном циклоне составляло 984 гПа; он перемещался на северо-восток, восток со скоростью 40 км/ч. Глубина северного циклона — 992 гПа; он двигался на северо-восток, север со скоростью 10—20 км/ч. 8 декабря через центральную часть Курильской гряды южный вихрь переместился на акваторию Тихого океана и вскоре вошел в систему более глубокого тихоокеанского циклона. Северный циклон заполнился над крайним северо-востоком моря 8 декабря. Ветер с этим процессом усиливался до 17—22 м/с, волнение развивалось до 4—5 м.

9 декабря на центральную часть акватории с Японского моря вышел циклон с давлением в центре 996 гПа. Двигаясь на север со скоростью 30–40 км/ч, циклон углублялся, в конце декады находился на северо-западе моря с давлением в центре 982 гПа. Он обусловил усиление ветра до 18–23 м/с, волнение 4–5 м.

Берингово море

Циклон с давлением в центре 966 г Π а, который в конце ноября вышел на юго-западную часть Берингова моря, медленно двигался на восток, 3 декабря заполнился в районе центральной части Алеутской гряды. Ветер на акватории моря оставался очень сильным, до 18–23 м/с, волнение – до 5–6 м.

4 декабря к Командорским островам с юга вышел циклон с давлением в центре 996 гПа. Над акваторией моря он сменил направление движения, начал перемещаться на восток со

скоростью 30–40 км/ч, углубился до 992 гПа. Циклон заполнился на востоке моря 5 декабря. В тылу циклона ветер был сильный 12–17 м/с, волнение до 3–4 м.

В период 6–7 декабря по северу акватории проследовал циклон с давлением в центре 980 гПа. Он вызвал усиление ветра до 20–25 м/с, волнение до 5–6 м. 8 декабря циклон вышел на Аляску, но продолжал обуславливать штормовые условия на востоке моря. В тыл циклону с Чукотки распространилось поле высокого давления, а 10 декабря скатилось ядро с давлением в центре 1026–1028 гПа.

Северо-западная часть Тихого океана

1 декабря, фронтальный циклон с давлением в центре 1000 гПа над центральной частью района (он образовался 30 ноября восточнее Японии), со скоростью 70 км/ч продолжал перемещаться на восток. 2 декабря начал интенсивно углубляться и с давлением в центре 982 гПа по 42-й параллели покинул восточное полушарие. На акватории северо-западной части Тихого океана он успел вызвать усиление ветра до 18–23 м/с, волнение до 4–5 м.

1 декабря вблизи западной части Алеутской гряды располагался циклон с давлением в центре 966 гПа, в дальнейшем он вышел на акваторию Берингова моря. В зоне действия циклона над северной частью района ветер оставался сильным до $18-23\,$ м/с, волнение развивалось до $7-8\,$ м.

3 декабря с Японского моря в северо-западную часть Тихого океана вышел циклон с давлением в центре 1012 гПа. Углубляясь, он двигался на восток со скоростью 40 км/ч, 6 числа по 40-й параллели с давлением в центре 992 гПа переместился в западное полушарие. 6 декабря в зоне действия циклона ветер был сильный до 13-18 м/с, волнение – до 3-4 м.

3 декабря в районе с координатами 42° с. ш., 158° в. д. образовался антициклон мощностью $1022~\mathrm{г}$ па. Двигаясь на восток со скоростью $50-60~\mathrm{km/4}$, 4 декабря он по 36-й параллели с давлением в центре $1026~\mathrm{r}$ па покинул восточное полушарие.

4 числа с Японского моря в Тихий океан переместилось ядро с давлением в центре 1022 гПа. Усиливаясь, оно двигалось на северо-восток, восток со скоростью 40–50 км/ч, 6 декабря по 48-й параллели с давлением в центре 1026 гПа вышло в восточную часть океана.

4 декабря восточнее Тайваня образовался волновой циклон с давлением в центре 1016 гПа. 5 декабря с давлением 1002 гПа циклон находился в районе с координатами 30° с. ш., 139° в. д. В дальнейшем перемещался на северо-восток со скоростью 60 км/ч, углублялся. 8 числа над центральной частью района перешел в стадию максимального развития, замедлил движение и, сделав петлю, начал двигаться на юго-восток, восток со скоростью 40 км/ч. Минимальное давление в его центре составляло 976 гПа. 10 декабря, заполнившись до 992 гПа, по 39-й широте циклон покинул восточное полушарие. Ветер в зоне циклона достигал 20-25 м/с, волнение развивалось до 5-6 м

5 декабря с южной части Японского моря в Тихий океан вышло ядро с давлением в центре 1022 гПа. Двигаясь на северо-восток со скоростью 40 км/ч, 7 числа оно по 48-й параллели переместилось в западное полушарие с давлением в центре 1026 гПа.

Следующее ядро переместилось в Тихий океан с Восточного Китая 7 декабря с давлением в центре 1020 гПа. Двигалось вдоль 30-й параллели на восток со скоростью 20-30 км/ч, в конце декады находилось в районе с координатами 33° с. ш., 155° в. д. с давлением в центре 1026 гПа.

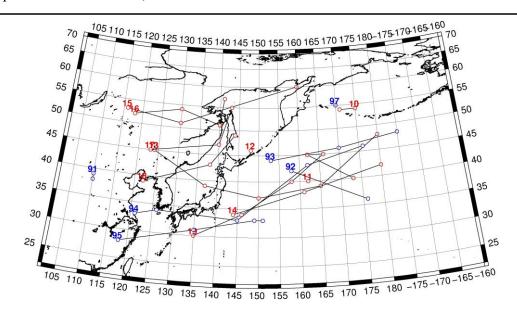


Рис. 1-1 Траектории движения циклонов и антициклонов в I декаде декабря

		Циклоны	Į		Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
10	01.12.2023	54	175	966	91	01.12.2023	39	110	1040		
	02.12.2023	54	171	974		02.12.2023	39	110	1032		
11	01.12.2023	40	162	1000	03.12.202		38	110	1032		
12	01.12.2023	46	148	1002	92	03.12.2023	42	158	1022		
13	02.12.2023	45	124	1018		04.12.2023	36	176	1026		
	03.12.2023	39	137	1014	93	04.12.2023	44	153	1022		
	04.12.2023	37	150	1008		05.12.2023	46	170	1024		
	05.12.2023	39	165	1010		06.12.2023	48	185	1020		
	06.12.2023	48	180	996	94	03.12.2023	33	121	1026		
14	01.12.2023	34	144	1012		04.12.2023	34	126	1024		
	02.12.2023	38	161	1004		05.12.2023	33	145	1024		
	03.12.2023	42	180	982		06.12.2023	43	162	1024		
15	03.12.2023	53	116	1008		07.12.2023	46	176	1026		
	04.12.2023	51	130	1008	95	07.12.2023	28	118	1024		
	05.12.2023	60	160	996		08.12.2023	31	135	1022		
16	05.12.2023	52	118	994		09.12.2023	33	149	1024		
	06.12.2023	54	130	994		10.12.2023	33	151	1024		
	07.12.2023	51	140	998	97	10.12.2023	55	170	1026		
	08.12.2023	57	141	992							
17	08.12.2023	45	123	996							
	09.12.2023	47	140	1006							
	10.12.2023	55	143	986							
18	06.12.2023	39	122	1010							
	07.12.2023	43	138	992							
	08.12.2023	49	144	992							
19	05.12.2023	30	135	1002							
	06.12.2023	34	146	996							

ЕЖЕМЕСЯЧНЫЙ ГИДРОМЕТЕОРОЛОГИЧЕКИЙ БЮЛЛЕТЕНЬ ДВНИГМИ

Авторы: Мезенцева Л. И., Каптюг В. А.

		Циклоны	I		Антициклоны					
Номер	р Дата Широта Долгота Давление				Номер	Дата	Широта	Долгота	Давление	
	07.12.2023	40	158	988						
	08.12.2023	45	166	984						
	09.12.2023	45	162	982						
	10.12.2023	40	173	990						

II декада декабря 2023 г.

Японское море

В первой половине декады над Японским морем сохранялась муссонная циркуляция. 15 декабря с Желтого моря вышел циклон с давлением в центре 1004 гПа. Двигаясь на восток со скоростью 70-80 км/ч, он обусловил усиление ветра до 15-20 м/с, волнение до 3-4 м. В конце суток 15 декабря циклон переместился в Тихий океан.

16 декабря на западе Японского моря образовался циклон с давлением в центре 1014 гПа. Двигаясь на северо-восток со скоростью 70 км/ч, циклон углублялся, вызвал усиление ветра до 18-23 м/с, волнение до 5-6 м. 17 числа через Сангарский пролив он переместился к южным островам Курильской гряды с давлением в центре 988 гПа.

В конце декады над акваторией моря восстановилась муссонная циркуляция со свежими северо-западными ветрами, на фоне которой 19 декабря по центральной части акватории проследовал неглубокий циклон.

Охотское море

Циклон, который вышел на северо-запад Охотского моря в конце первой декады, постепенно заполнялся, 12 числа прекратил свое существование. Вблизи Камчатки в это время развивалась циклоническая система с несколькими центрами. 11 декабря один из циклонов с давлением в центре 992-994 гПа со скоростью 10-20 км/ч перемещался на северо-запад над севером Охотского моря. 12 декабря циклоническая система начала заполняться, окончательно заполнилась 13 числа. Скорость ветра над морем в период 11-12 декабря составляла 15-20 м/с, волнение развивалось до 3-4 м.

14 декабря глубокий циклон с давлением в центре 952 гПа перевалил через Камчатку на северо-восток Охотского моря, заполнившись до 962 гПа. Ветер в Охотском море достигал 23-28 м/с, волнение развивалось до 7-8 м. Циклон оставался малоподвижным вблизи западного побережья Камчатки, заполнился лишь 17 числа.

17 декабря на юг акватории Охотского моря с Японского моря вышел циклон глубиной 988 гПа. Двигаясь на северо-восток со скоростью 50 км/ч, он углублялся, обусловил усиление ветра до 20-25 м/с, волнение до 5-6 м. 18 декабря через северные Курилы циклон переместился в Тихий океан с давлением в центре 964 гПа. Влияние этого циклона на погодные условия Охотского моря сохранялось вплоть до 19 декабря, при этом барические градиенты, а вслед за ними и ветер, ослабевали.

20 декабря над акваторией моря образовалась целая серия неглубоких циклонов, сильный ветер сохранялся лишь на их границе с азиатским антициклоном.

Берингово море

В течение второй декады над Беринговым морем наблюдалась активная циклоническая деятельность, и только в самом начале декады по акватории моря в восточном направлении проследовала область высокого давления. При этом 11 декабря на западе, 11-13 декабря на

востоке моря ветер был сильный до $15-20\,$ м/с, что определялось циклогенезом в смежных районах, волнение моря – до $3-4\,$ м.

12 декабря на юго-западную часть моря вышел неглубокий циклон с давлением в центре 1004 гПа. Он двигался на восток со скоростью 40 км/ч, 13 числа скатился на акваторию Тихого океана, втянулся в систему более глубокого циклона. Не вызвал значительного усиления ветра и волн.

14 декабря к Командорским островам с юга вышел циклон с давлением в центре 962 гПа. Он двигался сначала вдоль восточного побережья Камчатки на север, затем перевалил через полуостров в Охотское море. Минимальное давление в его центре составляло 952 гПа. Циклон вызвал усиление ветра до 30 м/с, волнение до 7–8 м. При переваливании через Камчатку циклон расслоился на несколько центров. В течение 15–16 декабря циклоническая система оставалась малоподвижной вблизи полуострова, циклоны заполнялись, ветер ослабевал, но оставался сильным до 15–20 м/с, волнение – до 6–7 м. В период 15–16 декабря циклоническую систему пополняли циклоны, которые выходили с юга на юго-восток акватории моря. Наиболее глубокий циклон вышел 16 декабря, над Бристольским заливом он углубился до 978 гПа.

С 17 декабря на погоду в Беринговом море начал оказывать следующий глубокий циклон, который с юго-запада приближался к Камчатке. 18 декабря он находился вблизи южной оконечности Камчатки с давлением в центре 966 гПа (рис. 1-2). Ветер над акваторией моря усилился до 20–25 м/с, волнение вновь возросло до 6–7 м. В дальнейшем со скоростью 30–40 км/ч циклон двигался на восток южнее Алеутской гряды. При его окклюдировании выделились ещё два центра. Один из них 19 числа образовался над центральной частью Берингова моря с давлением в центре 974 гПа. 20 декабря циклоническая система подошла к Бристольскому заливу, заполнившись на 6–8 гПа. В конце декады ветер стих до 15–20 м/с, волнение улеглось до 5–6 м.

Северо-западная часть Тихого океана

В начале декады, 12 декабря, на востоке района, в районе с координатами 38° с. ш., 176° в. д., располагался мощный антициклон с давлением в центре 1034 гПа. Он образовался при слиянии двух ядер: одно из них переместилось с востока, в конце первой декады оно располагалось в районе с координатами 33° с. ш., 155° в. д. с давлением в центре 1026 гПа, второе скатывалось с Берингова моря с давлением в центре тоже 1026 гПа. В конце суток 12 декабря антициклон по 36-й параллели переместился в западное полушарие с давлением в центре 1036 гПа.

12 декабря с Японского моря переместился развивающийся циклон с давлением в центре 1008 гПа. Двигаясь на северо-восток со скоростью 80 км/ч, он интенсивно углублялся, 14 числа подошел к Командорским островам с давлением в центре 952 гПа. Скорость ветра над акваторией района в зоне действия циклона и атмосферных фронтов достигала 18-23 м/с, волнение развивалось до 5-6 м.

14 декабря от отрога азиатского антициклона выделилось ядро с давлением в центре 1030 гПа. Оно перемещалось от Японии на восток со скоростью 40–50 км/ч, 18 декабря по 31-й параллели покинуло восточное полушарие с давлением в центре 1026 гПа.

15 декабря с Японского моря в северо-западную часть Тихого океана вышел циклон с давлением в центре 1004 гПа. Двигаясь на восток со скоростью 80 км/ч, 17 числа по 42-й параллели с давлением в центре 1006 гПа он переместился в западное полушарие. Минимальное давление в его центре составляло 1002 гПа. На южной периферии циклона ветер был сильный до 13-18 м/с, волнение – до 5-6 м.

18 декабря с Охотского моря на северо-запад района к южной Камчатке вышел глубокий циклон с давлением в центре 966 гПа (рис. 1-2). Двигался на восток, северо-восток со скоростью

40 км/ч, 20 числа через центральные острова Алеутской гряды он перевалил в Берингово море. Ветер в зоне циклона достигал штормовой силы, 20–25 м/с, волнение развивалось до 7–8 м.

В конце декады в северо-западную часть Тихого океана с Японского моря вышла многоцентровая депрессия. Давление в циклонах составляло 1004—1008 гПа. Наибольшее развитие получил южный циклон системы. Он очень быстро перемещался на северо-восток, со скоростью 70—80 км/ч. В конце суток 20 декабря находился в районе с координатами 41° с. ш., 165° в. д. с давлением в центре 996 гПа. В передней части циклона и его южной периферии началось усиление ветра.

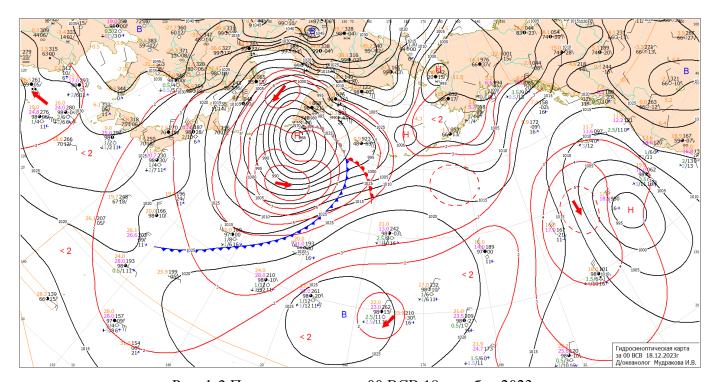


Рис. 1-2 Приземная карта за 00 ВСВ 18 декабря 2023 г.

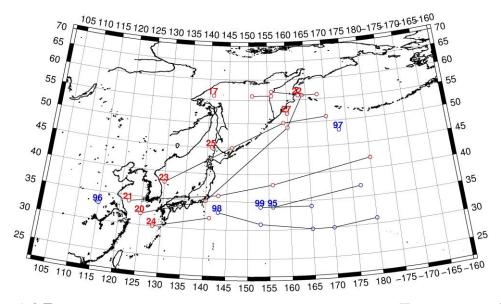


Рис. 1-3 Траектории движения циклонов и антициклонов во II декаде декабря

	-	Циклоны	[Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата Широта		Долгота	Давление		
17	11.12.2023	56	141	994	95	11.12.2023	34	156	1026		
20	11.12.2023	32	125	1012		12.12.2023	37	177	1034		
	12.12.2023	35	140	1008	96	12.12.2023	33	115	1030		
	14.12.2023	56	164	952	97	11.12.2023	48	173	1026		
	15.12.2023	57	156	968	98	14.12.2023	33	143	1030		
	16.12.2023	56	156	988		15.12.2023	31	153	1026		
	17.12.2023	56	151	1004		16.12.2023	30	165	1026		
	13.12.2023	49	160	990		17.12.2023	30	170	1026		
21	14.12.2023	34	122	1014		18.12.2023	31	180	1024		
	15.12.2023	36	143	1008	99	19.12.2023	34	153	1022		
	16.12.2023	38	156	1002		20.12.2023	34	165	1024		
	17.12.2023	42	180	1006							
22	15.12.2023	56	163	976							
	16.12.2023	56	168	988							
	16.12.2023	38	130	1008							
	17.12.2023	45	146	980							
	18.12.2023	50	159	966							
	19.12.2023	51	170	970							
24	19.12.2023	30	128	1018							
	20.12.2023	32	141	1010							
25	20.12.2023	45	141	1006							
27	20.12.2023	52	160	1000							

III декада декабря 2023 г.

Японское море

В начале третьей декады над Японским морем сохранялась муссонная циркуляция. Ветер был северо-западный до 12-17 м/с, волнение – до 3-4 м.

24 декабря по южной части акватории проследовал неглубокий циклон с давлением в центре 1024 гПа, ослабивший барическое напряжение и, соответственно, ветер.

26 декабря ещё один циклон с давлением в центре 1010 гПа проследовал по центральной части моря, вызвал кратковременное усиление ветра до 10–15 м/с, волнение до 3–4 м.

В период 27–28 декабря по акватории моря перемещалось ядро с давлением в центре 1028 гПа. В конце декады, 30 декабря, на западную часть акватории с Желтого моря вышел циклон с давлением в центре 1018 гПа. Циклон перемещался на северо-восток со скоростью 40 км/ч, 31 числа перевалил через Японию в Тихий океан, не вызвав существенного усиления ветра.

Охотское море

В течение всей декады на севере моря сохранялся малоподвижный неглубокий циклон с давлением в центре $1006-1008\ \Gamma\Pi a$.

21 декабря на южную часть акватории с Японского моря вышел циклон с давлением в центре 1004 гПа. 23 декабря он углубился до 1000 гПа, оставаясь на юге акватории. В его тылу

ветер усиливался до 15-20 м/с, волнение возрастало до 4-5 м. 24 числа циклон через южные Курилы переместился в Тихий океан с давлением в центре 1004 гПа.

25 декабря с Японского моря на юг Охотского моря вышел циклон с давлением в центре $1014~\mathrm{г\Pi a}$. Двигаясь на северо-восток со скоростью $30~\mathrm{кm/ч}$, циклон углублялся. $27~\mathrm{числa}$ через северные Курилы переместился в Тихий океан с давлением в центре $992~\mathrm{г\Pi a}$. На юге моря циклон вызвал усиление ветра до $10-15~\mathrm{m/c}$, волнение до $2-3~\mathrm{m}$.

Берингово море

В начале третьей декады циклон, который находился над Бристольским заливом с давлением в центре с $984~\mathrm{г}$ Па, продолжал обуславливать сильный ветер до $12-17~\mathrm{m/c}$, волнение до $3-4~\mathrm{m}$.

23 числа на западную часть моря вышел циклон с давлением в центре 990 гПа. Углубившись до 982 гПа, он начал медленно двигаться на восток, юго-восток. Циклон заполнился 25 декабря вблизи центральной части Алеутской гряды. Кроме того, на погоду южной части акватории в начале декады оказывал влияние глубокий циклон, который перемещался южнее Алеутской гряды. Скорость ветра в первой половине декады в Беринговом море составляла 15–20 м/с, волнение развивалось до 4–5 м.

26 декабря с Чукотского моря на северо-восточную часть моря переместилась депрессия с давлением в центре 984 гПа, обуславливая ветер до 12–17 м/с, волнение до 3–4 м. Дальнейшего развития депрессия не получила, заполнилась в этом же районе 28 декабря.

28 декабря южнее Алеутской гряды в восточном направлении перемещалась глубокая депрессия, на её восточной периферии у точки окклюзии образовался самостоятельный центр. Последний с давлением в центре 976 гПа в конце суток 28 декабря вышел на юг акватории Берингова моря. 29 декабря циклон углубился до 964 гПа. 30 числа и основной центр депрессии вышел на акваторию моря. Циклоническая система оставалась над центральной частью Берингова моря до конца декады, обуславливая штормовые условия погоды: скорость ветра до 20–25 м/с, волнение до 7–8 м.

Северо-западная часть Тихого океана

Область низкого давления, состоящая из трех циклонов, которая в конце второй декады вышла на акваторию района с Японского моря, продолжала двигаться на восток, северо-восток со скоростью $60-70\,$ км/ч, углублялась. 22 декабря, объединившись в один вихрь с давлением в центре $966\,$ гПа, циклоническая система по 49-й параллели переместилась в западное полушарие. В радиусе $600-900\,$ миль от центра циклонической системы ветер достигал $23-28\,$ м/с, волнение развивалось до $8-10\,$ м.

21—22 декабря от восточного побережья Японии вблизи 40-й параллели со скоростью 50—60 км/ч проследовал волновой циклон с давлением в центре 1002—1004 гПа. На его южной периферии ветер был сильный до 13—18 м/с, волнение развивалось до 5—6 м.

24 декабря вблизи юго-восточного побережья Японии образовалось ядро с давлением в центре 1030 гПа. Двигаясь на восток со скоростью 50-60 км/ч вдоль 30-й параллели, 26 числа оно покинуло восточное полушарие с давлением в центре 1026 гПа.

В период 25–26 декабря южнее 40-й параллели в системе полярного фронта перемещался циклон с давлением в центре 1008–1010 гПа. Вблизи восточной границы района 26 декабря при объединении с циклоном, который развивался севернее, фронтальный циклон углубился до 988 гПа, что обусловило усиление ветра до 18–23 м/с, волнение – до 5–6 м. 27 числа, продолжая углубляться, по 40-й параллели он переместился в западное полушарие.

27 декабря с Японского моря в северо-западную часть Тихого океана вышел циклон с давлением в центре 1002 гПа. Углубляясь, циклон начал перемещаться на северо-восток со скоростью 40-50 км/ч, 29 декабря по 50-й параллели покинул восточное полушарие с давлением в центре 960 гПа. Скорость ветра в зоне действия циклона достигала 23-28 м/с, волнение развивалось до 8-10 м.

28 числа с Японского моря в Тихий океан переместилось ядро с давлением в центре 1028 гПа. Двигаясь на восток со скоростью 40-50 км/ч, 29 декабря по 30-й параллели с давлением в центре 1020 гПа оно покинуло акваторию района.

Циклон, который образовался 28 декабря вблизи юго-восточного побережья Японии, двигался на восток, северо-восток со скоростью 60-70 км/ч, незначительно углублялся. 30 декабря по 35-й параллели переместился в западное полушарие с давлением в центре 996 гПа. В радиусе 500-600 миль от центра циклона 30 декабря ветер был сильный до 15-20 м/с, волнение до 4-5 м.

30 декабря южнее Японии вблизи 30-й параллели перемещался волновой циклон с давлением в центре 1008-1012 гПа. 31 декабря он двигался на северо-восток со скоростью 80-90 км/ч, интенсивно углублялся. В срок 18 ВСВ 31 декабря находился в районе с координатами 38° с. ш., 156° в. д. с давлением в центре 986 гПа. Ветер в зоне циклона усилился до 20-25 м/с, волнение – до 3-4 м.

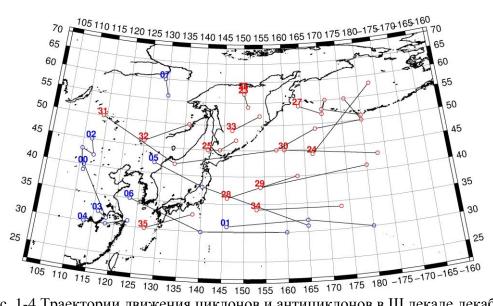


Рис. 1-4 Траектории движения циклонов и антициклонов в III декаде декабря

		Циклоны	I		Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	мер Дата Широта Д			Давление	
24	22.12.2023	58	183	966	00	22.12.2023	40	111	1056	
	21.12.2023	44	167	988		23.12.2023	31	118	1040	
25	22.12.2023	45	144	1004	01	24.12.2023	31	146	1030	
	23.12.2023	47	148	1000		25.12.2023	32	165	1030	
	21.12.2023	45	141	1004		26.12.2023	30	180	1026	
26	22.12.2023	57	150	1006	02	26.12.2023	45	112	1040	
	23.12.2023	54	151	1008		27.12.2023	42	113	1038	
	21.12.2023	57	150	1006		28.12.2023	43	110	1040	

Циклоны						Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление			
27	22.12.2023	52	170	996		29.12.2023	39	111	1032			
	23.12.2023	55	171	988	03	22.12.2023	32	116	1042			
	24.12.2023	53	170	982		23.12.2023	31	118	1040			
	25.12.2023	51	180	982	04	24.12.2023	30	113	1036			
	21.12.2023	54	164	996		25.12.2023	30	118	1036			
28	22.12.2023	40	163	1008		26.12.2023	31	123	1032			
	21.12.2023	36	146	1004	05	27.12.2023	42	128	1036			
29	23.12.2023	38	154	1008		28.12.2023	38	140	1024			
	24.12.2023	41	180	988		29.12.2023	31	165	1022			
30	24.12.2023	45	160	1000	06	29.12.2023	35	123	1026			
	25.12.2023	43	183	992		30.12.2023	30	140	1024			
31	25.12.2023	50	114	1014		31.12.2023	30	160	1022			
	26.12.2023	42	133	1016	07	30.12.2023	60	129	1040			
	27.12.2023	45	158	994		31.12.2023	56	130	1040			
	28.12.2023	49	168	958	59	31.12.2023	50	121	1040			
	29.12.2023	50	180	964	60	31.12.2023	44	115	1040			
	30.12.2023	55	176	966								
	31.12.2023	55	176	968								
32	24.12.2023	46	125	1026								
	25.12.2023	50	136	1020								
33	26.12.2023	49	147	1008								
	27.12.2023	52	154	994								
34	29.12.2023	34	153	1014								
	30.12.2023	34	173	1000								
35	30.12.2023	30	127	1012								
	31.12.2023	33	138	1002								
36	24.12.2023	58	150	1006								
	25.12.2023	58	150	1010	_	_						
	26.12.2023	58	150	1006								
	27.12.2023	58	150	1002								

1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных реанализа NCEP/NCAR, приведены ниже на рис. 1-5–1-7. Анализ термобарических полей выполнен на базе средних за месяц карт геопотенциала для стандартного изобарического уровня 500 гПа, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне 850 гПа. Аномалии рассчитаны относительно средних многолетних значений за период 1981–2010 гг.

Региональный обзор

В декабре высотное барическое поле носило вполне зимний характер распределения. У восточного побережья материка сохранялась высотная барическая ложбина, над центральной Азией – пологий обширный гребень, фронтальная зона – по-зимнему напряженная. Значительные отклонения от климатического распределения наблюдались в полярной зоне региона. Над бассейнами Оби и Енисея сохранилось влияние высотного барического гребня взамен поля относительно низкого давления, которое здесь обычно наблюдается в декабре. Это способствовало формированию значительных положительных аномалий геопотенциальных высот поверхности H₅₀₀ (до +13 дам), т.е. воздушная масса была значительно теплее обычного. Теплый воздух, в том числе, распространялся на прилегающие районы Арктики и Восточной Сибири вплоть до левобережья Лены. Атмосферные процессы над дальневосточными морями и материком вблизи северного побережья Охотского моря и севера Берингова моря контролировались глубокими депрессиями. Охотоморская депрессия была глубже нормы примерно на 4 дам, беринговоморская - на 14 дам, при этом их глубина и площадь были примерно равными. Отрицательные аномалии геопотенциальных высот поверхности Н₅₀₀ над севером Охотского моря и Беринговым морем сочетались со значительными положительными аномалиями над умеренными и тропическими широтами Тихого океана (до +5...+9 дам), что способствовало значительному напряжению тихоокеанской ветви высотной фронтальной зоны (рис. 1-5).

У поверхности земли над материком доминировал усиливающийся азиатский антициклон. Его мощность незначительно превышала климатическую (примерно на 2 гПа), положение — близко к среднему многолетнему. Ленско-колымский отрог восстановил свои сезонные права (над бассейном Колымы атмосферное давление близко к норме). Отрог антициклона, ориентированный на бассейн Оби, по-прежнему оставался мощным (аномалии атмосферного давления в этом районе достигали +3...+10 гПа). Основной циклогенез был сосредоточен над южной частью Берингова моря и крайней северо-восточной частью Тихого океана у берегов Аляски. Здесь сформировалось депрессионное поле, но если над южной частью Берингова моря, где располагается климатический центр алеутской депрессии, фон атмосферного давления близок к норме, то над заливом Аляска и Аляской он ниже нормы на 7–10 гПа. Субтропический пояс высокого давления над северной частью Тихого океана оставался зонально ориентированным, был незначительно приподнят к высоким широтам и мощнее обычного примерно на 4 гПа. Он практически объединился с юговосточным отрогом азиатского антициклона и потеснил к северу алеутскую депрессию — северозападная часть Тихого океана преимущественно в зоне положительных аномалий атмосферного давления до +3...+5 гПа (рис. 1-6).

Японское море

В средней тропосфере над Японским морем по-прежнему доминировал западно-восточный перенос воздуха. Воздушная масса над большей частью акватории была теплее нормы — преобладали положительные аномалии геопотенциальных высот изобарической поверхности H_{500} до +4 дам. Над крайним севером акватории (над севером Татарского пролива) термические свойства воздуха были близки к норме — аномалии геопотенциальных высот около нуля.

У земной поверхности акватория Японского моря находилась в смежном положении между алеутской депрессией и азиатским антициклоном. Фон атмосферного давления над морем превышал норму на 1-2 г Π а.

Температура воздуха на уровне H_{850} (нижняя тропосфера) над морем была распределена от 0 °C на юге до -19 °C на севере моря. Это состояние для большей части моря превышало норму примерно на 1 °C, для севера акватории (Татарского пролива) — близко к норме. За месяц температура воздуха над морем понизилась на 5–7 °C.

Охотское море

В средней тропосфере над севером акватории в течение месяца по-прежнему наблюдалась депрессия, что обуславливало наличие холодной воздушной массы (аномалии геопотенциальных высот изобарической поверхности H_{500} здесь отрицательные до -4 дам). Над южной частью моря погодные условия определялись южной, юго-восточной периферией депрессии, преобладал западно-восточный перенос воздуха; воздушная масса здесь была относительно теплой (аномалии геопотенциальных высот поверхности H_{500} положительные до +3 дам).

У земной поверхности Охотское море оставалось под влиянием поля низкого давления, но фон атмосферного давления ниже нормы примерно на $1\ \Gamma\Pi a$ лишь над северо-западной частью акватории. Над остальной частью моря атмосферное давление в среднем за месяц превышает норму на $1-3\ \Gamma\Pi a$.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от -10 °C на юге до -20...-22 °C на северо-западе акватории. Для большей части моря это состояние близко к норме, для северной — ниже нормы на 1—2 °C. За месяц температура воздуха над морем понизилась на 4—8 °C.

Берингово море

В средней тропосфере большая часть Берингова моря находилась под влиянием глубокой депрессии, центр которой располагался вблизи Берингова пролива. Юг акватории – в зоне слабого западно-восточного переноса воздуха. Над большей частью акватории господствовала холодная воздушная масса — аномалии геопотенциальных высот изобарической поверхности H_{500} преимущественно отрицательные, на северо-востоке акватории достигали -14 дам. Лишь на крайнем юго-западе моря аномалии геопотенциальных высот поверхности H_{500} близки к нулю — термические свойства воздуха, соответственно, тоже близки к средним многолетним.

У поверхности земли вся акватория моря оставалась под воздействием депрессионного поля. Наиболее низкое давление в течение месяца наблюдалось на юго-востоке акватории. Фон атмосферного давления над западной частью моря незначительно отличался от нормы, над северовосточной, восточной частью — ниже нормы на 1—7 гПа. Наибольшие отклонения от нормы — вблизи Берингова пролива.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от -7 °C на юге до -18 °C на севере, северо-западе акватории. Это состояние близко к норме для юго-западной части моря и ниже нормы для остальной акватории, где аномалии достигают -5 °C. За месяц температура воздуха над морем понизилась на 5-8 °C.

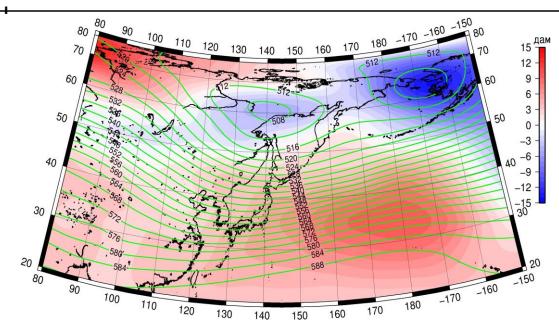


Рис. 1-5 Среднее поле H_{500} (изогипсы) и его аномалии (изополосы) в декабре 2023 г. (дам)

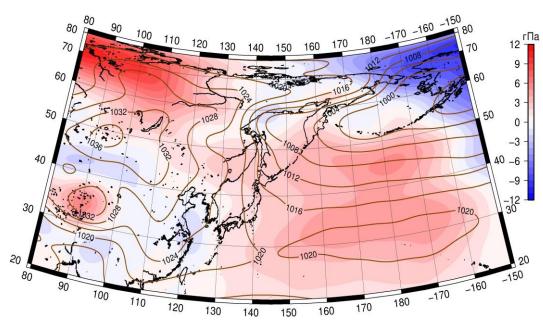


Рис. 1-6 Среднее поле атмосферного давления у поверхности земли (изобары) и его аномалии (изополосы) в декабре 2023 г. (гПа)

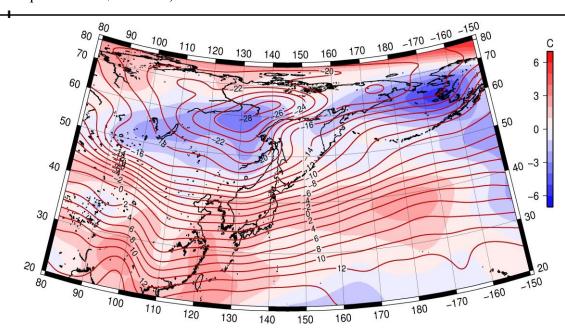


Рис. 1-7 Среднее поле T_{850} (изотермы) и его аномалии (изополосы) в декабре 2023 г. (°С)

1.3 Региональные индексы циркуляции атмосферы

1.3.1 Зональный и меридиональный перенос воздуха над II е. с. р.

Характеристика основных воздушных течений в средней и нижней тропосфере за декабрь 2023 г. сделана на основе индексов атмосферной циркуляции, приведенных ниже в таблице и на рис. 1-8-1-10. В данном разделе для характеристики индексов принята следующая терминология: норма $-\pm 0,3$ STD относительно нормы; незначительное отклонение от нормы $-\pm (0,4-0,7)$ STD; значительное отклонение от нормы $-\ge 2$ STD. Аномалии рассчитаны относительно средних многолетних значений (нормы) за период 1981-2010 гг.

Японское море

В декабре над Японским морем западно-восточный перенос воздуха оставался преобладающим в тропосфере (значения зональных индексов положительные). Его интенсивность в среднем слое тропосферы незначительно превышала норму (Kz равен 0,7STD), у поверхности земли, наоборот, — была незначительно слабее климатической (Kz равен -0,7STD). В зоне умеренных широт между 35° и 50° с. ш. над II е. с. р. перенос воздуха с запада на восток также оставался преобладающим (зональные индексы положительные). Его интенсивность превышала норму в среднем слое тропосферы (Kz равен 1,3STD) и была близка к климатической у поверхности земли (Kz составлял 0,2STD).

Интенсивность межширотного обмена во всем слое тропосферы над Японским морем была незначительно слабее обычного (|Km| равен -0,5STD и -0,6STD соответственно в среднем слое и у поверхности земли), что определялось ослаблением северной составляющей обмена (Кт равен 0,4STD и 0,7STD соответственно). В течение месяца во всем слое тропосферы доминировали движения воздуха с севера (значения индексов отрицательные).

Над широтной зоной $35^{\circ}-50^{\circ}$ с. ш. II е. с. р. в среднем за месяц интенсивность меридиональных движений воздуха была слабой, в средней тропосфере незначительно слабее нормы (|Km| равен -0,6STD и -1,6STD соответственно в среднем слое и у поверхности земли). При этом многолетний баланс между меридиональными составляющими остался близким к норме (Km-0,0STD и 0,2STD соответственно). Во всем слое сохранилось преобладание движений воздуха с севера (значения Km отрицательные).

Охотское море

Над Охотским морем во всем слое тропосферы сохранялось преобладание движений воздуха с запада на восток (значения зональных индексов положительные). Их интенсивность превышала климатическую, в нижнем слое — незначительно (индекс Кz равен 0,8STD и 0,6STD соответственно в средней и нижней тропосфере). В широтной зоне 50–70° с. ш. над II е. с. р. в средней тропосфере сохранялось доминирование движений воздуха с запада на восток (значение зонального индекса положительное), в нижнем слое тропосферы установилось преобладание воздушных движений с востока; их интенсивность была близка к норме (Кz соответственно равен 0,0STD и 0,3STD).

Интенсивность межширотного обмена в средней тропосфере над Охотским морем была близка к норме, многолетний баланс между меридиональными составляющими незначительно нарушен в пользу южной компоненты обмена (|Km| равен 0,1STD, Km-0,5STD); доминировали движения воздуха с юга (значение индекса положительное). У поверхности земли интенсивность меридиональных движений была незначительно слабее нормы, что обуславливалось ослаблением северной составляющей обмена (|Km| равен -0,5STD, Km-0,4STD); сохранилось доминирование движений воздуха с севера (значение индекса отрицательное).

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

TT sk	Уровень		Октябрь			Ноябрь			Декабрь			
Индекс*	(высота)	значение	ASTD**	STD**	значение	ASTD**	STD**	значение	ASTD**	STD**		
Кz Ям		16850	-1.4	3353	27018	0.2	3989	28524	0.7	3775		
Кz Ом		10750	-0.9	3043	16744	0.6	3825	12546	0.8	4744		
Кz Бм		6924	-1.1	3711	14082	0.7	4909	11598	1.1	5078		
Kz 35_50		18310	-1.1	2004	24756	0.1	2957	27898	1.3	2945		
Kz 50_70		9728	0.3	2253	7610	0.0	3131	5399	0.0	2894		
Kz 35_70		13505	-0.5	987	14863	0.0	1292	15155	0.9	1757		
Кт Ям		-2713	-1.7	1477	915	1.1	1829	-2207	0.4	1609		
Кт Ом		1437	0.1	1389	2662	0.7	1822	1898	0.5	1450		
Кт Бм	500 гПа	686	0.9	878	1816	0.1	1598	541	-1.1	1599		
Km 35_50	300 111a	-1265	-1.5	486	-413	0.2	653	-856	0.0	792		
Km 50_70		-161	0.9	399	-822	-0.8	579	-1361	-1.6	698		
Km 35_70		-590	-0.3	344	-620	-0.5	522	-1123	-1.1	581		
Кт Ям		4048	1.0	1204	3134	-0.1	1383	3889	-0.5	1559		
Кт Ом		2560	-0.3	1403	4812	0.6	1920	3289	0.1	1761		
Кт Бм		1767	-1.0	916	3205	-0.5	2135	2352	-1.1	2329		
Km 35_50		4686	1.1	1042	5347	0.6	1302	4683	-0.6	960		
Km 50_70		2695	-0.7	856	4692	0.1	1313	4788	0.0	1200		
Km 35_70		3567	0.3	763	4951	0.4	1170	4724	-0.3	949		
Кz Ям		3140	0.7	1022	2169	-0.1	1241	904	-0.7	1185		
Кz Ом		386	-0.8	1222	2268	0.7	1455	103	0.6	2105		
Кz Бм		-1617	-1.3	2373	4367	1.0	2861	445	0.9	3331		
Kz 35_50		2942	0.5	747	4145	0.4	1133	4182	0.2	1286		
Kz 50_70		774	0.0	1213	1206	0.6	1548	-153	0.3	1624		
Kz 35_70		1739	0.4	640	2307	1.1	664	1550	0.3	997		
Кт Ям		-2623	-1.0	685	-3737	-0.5	769	-4247	0.7	869		
Кт Ом		-217	0.8	753	-2630	-0.1	1261	-3314	0.4	1155		
Кт Бм	1000 гПа	-147	0.8	641	194	0.5	1087	-1392	-0.9	1094		
Km 35_50	10001114	-1283	-1.7	372	-1111	0.4	433	-1850	0.2	558		
Km 50_70		-222	1.8	271	-1432	-0.9	422	-1842	-1.3	479		
Km 35_70		-647	0.0	269	-1255	-0.4	354	-1806	-0.8	408		
Кт Ям		3581	1.0	933	5149	0.6	1050	5820	-0.6	1183		
Кт Ом		2018	-0.4	690	4964	0.1	1391	5508	-0.5	1756		
Кт Бм		1486	-1.1	603	1698	-0.9	1371	2746	-0.4	1355		
Km 35_50		2533	1.5	366	2689	-0.4	480	2909	-1.6	532		
Km 50_70		1885	-1.7	289	3537	0.4	534	4122	0.8	681		
Km 35_70		2151	-0.2	202	3160	0.2	431	3569	-0.1	543		

^{*} Описание индексов приведено в разделе «Терминология».

Интенсивность межширотного обмена в зоне между 50° и 70° с. ш. над II е. с. р. была близка к средней многолетней в среднем слое тропосферы и превышала её у поверхности земли (|Km| соответственно равен 0,0STD и 0,8STD). Многолетний баланс между меридиональными составляющими был нарушен в пользу северной составляющей обмена (Кт соответственно равен -1,6STD и -1,3STD). Во всем слое сохранилось преобладание движений воздуха с севера (значения индекса Кт отрицательные).

^{**} Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1981–2010 гг.

Берингово море

В течение месяца во всем слое тропосферы над Беринговым морем доминировал перенос воздуха с запада на восток (значения зональных индексов положительные). Его интенсивность превышала норму (Кz равен 1,1STD и 0,9STD соответственно в средней тропосфере и у поверхности земли).

Межширотный обмен в средней тропосфере над акваторией моря был слабым, что определялось ослаблением южной компоненты обмена (|Km| составлял -1,1STD, Km тоже -1,1STD). У поверхности земли межширотный обмен был незначительно слабее нормы, многолетний баланс между меридиональными составляющими нарушен в пользу северной составляющей обмена (|Km| составлял -0,4STD, Km - -0,9STD). В течение месяца в среднем слое тропосферы преобладал перенос воздуха с юга (значение меридионального индекса положительное), в нижней тропосфере – с севера (значение индекса отрицательное).

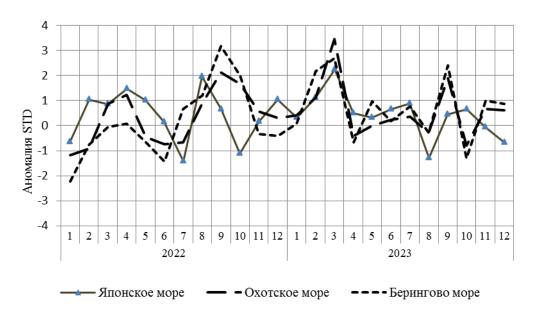


Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Kz) в нижней тропосфере над дальневосточными морями

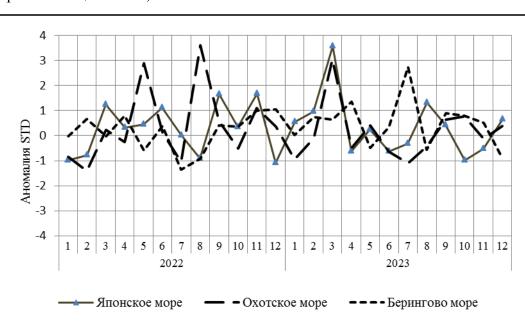


Рис. 1-9 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кт) в нижней тропосфере над дальневосточными морями

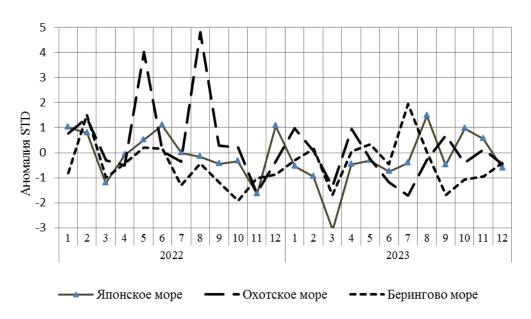


Рис. 1-10 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Km|) в нижней тропосфере над дальневосточными морями

1.4 Аналог погоды на декабрь 2023 г. для Дальнего Востока

Аналог подбирается для усредненных за месяц полей атмосферного давления у поверхности земли и геопотенциала H_{500} по II е. с. р. Объективным критерием подбора является коэффициент корреляции. Учитывается динамика процесса: используются поля за предшествующие месяцы с весовыми коэффициентами.

Дата аналога для декабря 2023 г. – декабрь 2019 г.

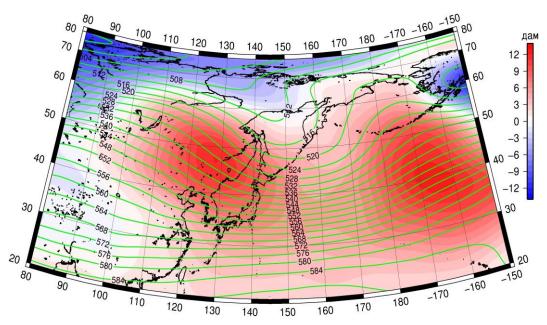


Рис. 1-11 Среднее поле H_{500} (изолинии) и его аномалии (изополосы) в январе 2020 г. (дам)

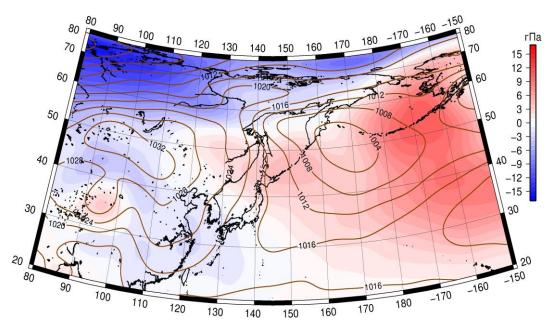


Рис. 1-12 Среднее поле атмосферного давления у поверхности земли (изолинии) и его аномалии (изополосы) в январе 2020 г. (гПа)

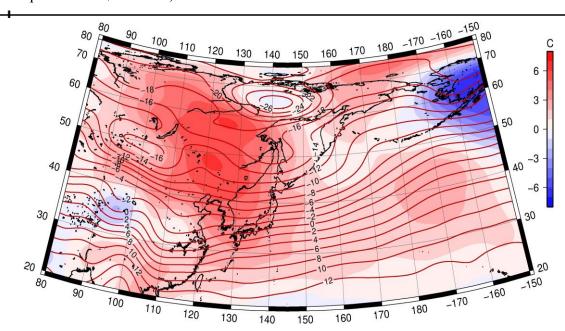


Рис. 1-13 Среднее поле T_{850} (изолинии) и его аномалии (изополосы) в январе 2020 г. (°С)