1 Метеорологические условия

1.1 Синоптический обзор

Кинематические карты, приведенные на рис. 1-1, 1-2 и 1-4, содержат положение циклонов (красный цвет) и антициклонов (синий цвет) за 00 ВСВ каждых суток декады и траектории их перемещения. За барическими объектами закреплен номер, по которому из ниже следующих таблиц можно определить точные координаты и давление в центре объекта в срок 00 ВСВ.

I декада июня 2024 г.

Японское море

В начале декады над морем располагалось малоградиентное поле пониженного давления с частным циклоном глубиной 1006 гПа на юге акватории. Медленно смещаясь на восток, северовосток, 3 июня циклон переместился в Тихий океан.

В тылу циклона 3 числа над морем установился барический гребень, ориентированный с Охотского моря. В области гребня образовалось малоподвижное ядро с давлением в центре 1022 гПа. 6 июня ядро переместилось на восток в Тихий океан. В дальнейшем до конца декады над всей д акваторией сохранялось поле повышенного давления.

В течение декады существенного усиления ветра и волн не наблюдалось.

Охотское море

В начале декады на северо-западную часть Охотского моря вышел неглубокий циклон с давлением в центре $1004~\mathrm{r\Pi}a$, над южной частью акватории проследовал антициклон с давлением в центре $1018~\mathrm{r\Pi}a$. Циклон, заполняясь, сохранял свое местоположение до 5 июня, над остальной акваторией располагалось поле повышенного давления.

В период 4–7 июня над северной половиной моря установился мощный антициклон с максимальным давлением 1030 гПа. 7 числа он вошел в систему тихоокеанского антициклона.

8 июня на севере моря образовался частный циклон с давлением в центре 1004 гПа. 9 числа он переместился на континент, не вызвав существенного ухудшения погодных условий. В дальнейшем вновь восстановилось поле повышенного давления.

Берингово море

1 июня на юго-запад акватории вышел циклон с давлением в центре 982 гПа. Заполняясь, он двигался по югу моря в восточном направлении, 2 июня через восточные Алеуты покинул акваторию моря с давлением в центре 994 гПа. В зоне действия циклона ветер оставался сильным до 15-18 м/с, высота волн – до 3-4 м.

В середине декады над западной частью моря установилось поле высокого давления, а восточная часть находилась пол влиянием тыловой части циклона, который развивался над Аляской.

7 июня на северо-запад акватории вышел частный циклон с давлением в центре 1006 гПа. Он оставался на месте, не вызывая существенного усиления ветра и волн, заполнился 8 июня. К концу декады поле высокого давления распространилось на всю акваторию Берингова моря.

Северо-западная часть Тихого океана

В начале декады в северо-западной части Тихого океана наблюдался активный циклогенез. Циклон, который в конце мая образовался вблизи юго-восточного побережья Японии, двигался на северо-восток со скоростью $60~\rm km/ч$, углублялся. $2~\rm uюня$ по 46-й параллели переместился в западное полушарие с давлением в центре $992~\rm r\Pi a$. В зоне циклона отмечались сильный ветер до $15-20~\rm m/c$, волнение до $4-5~\rm m$.

Антициклон мощностью 1018 гПа, он переместился на акваторию района с Охотского моря 2 числа, двигался на восток, юго-восток со скоростью 20-30 км/ч, усиливался, 6 июня по 45-й параллели покинул восточное полушарие с давлением в центре 1022 гПа. Максимальное давление в его центре отмечалось 3-4 июня, составляло 1034 гПа.

2 июня в районе с координатами 31° с. ш., 150° в. д. на полярном фронте образовался циклон с давлением 1002 гПа. Двигался на северо-восток со скоростью 30–40 км/ч без развития, 4 числа вышел в район с координатами 40° с. ш., 160° в. д., где превратился в малоподвижное барическое образование. В передней части циклона, на границе с тихоокеанским антициклоном, ветер был сильный 15–20 м/с, волнение – до 3–4 м. В дальнейшем циклон медленно перемещался на север, заполнялся. 7 июня, располагаясь южнее мыса Лопатка, заполнился.

6 июня в районе с координатами 40° с. ш., 162° в. д. образовался волновой циклон с давлением 1004 гПа. Двигаясь на северо-восток со скоростью 40 км/ч, циклон углубился до 1000 гПа. Ветер в зоне циклона достигал 15-18 м/с, волнение развивалось до 3 м. В конце суток 7 июня он заполнился на северо-востоке района.

Антициклон, который переместился с Японского моря 6 июня с давлением в центре $1020 \, \text{гПа}$, двигался на восток со скоростью $30 \, \text{км/ч}$, усиливался. $10 \, \text{июня}$ по 40-й параллели он переместился в западное полушарие с давлением в центре $1030 \, \text{гПа}$.

9 числа южнее Корейского пролива образовался циклон с давлением в центре 1004 гПа. Он двигался на восток со скоростью 20–30 км/ч. В конце декады находился вблизи юго-восточного побережья Японии с давлением в центре 1006 гПа. Существенного усиления ветра и волн в зоне циклона не наблюдалось.

В конце декады на полярном фронте, лежащем вдоль 35-й параллели, образовывались волновые циклоны с давлением в центре 1004-1006 гПа. Без развития они двигались на восток со скоростью 20-30 км/ч. Ветер в зоне циклонов не превышал 8-13 м/с, волнение – не более 2-3 м.

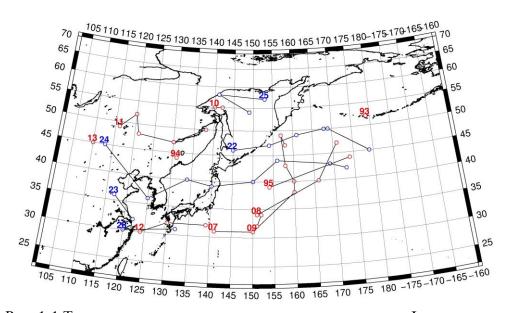


Рис. 1-1 Траектории движения циклонов и антициклонов в I декаде июня

Циклоны						Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
93	01.06.2024	52	179	982	22	01.06.2024	46	145	1016		
94	01.06.2024	44	131	1010		02.06.2024	47	154	1018		
95	01.06.2024	39	154	994		03.06.2024	49	161	1030		
	02.06.2024	44	174	992		04.06.2024	50	168	1034		
07	01.06.2024	31	141	1006		05.06.2024	50	169	1030		
	02.06.2024	31	150	1002		06.06.2024	45	179	1022		
	03.06.2024	38	160	1004		01.06.2024	36	117	1018		
	04.06.2024	40	160	1008		02.06.2024	32	122	1014		
	05.06.2024	43	158	1010		03.06.2024	31	120	1012		
	06.06.2024	49	157	1002	24	03.06.2024	45	113	1014		
	07.06.2024	47	158	1004		04.06.2024	36	125	1016		
08	05.06.2024	34	151	1008		05.06.2024	40	134	1022		
	06.06.2024	40	166	1004		06.06.2024	39	140	1020		
	07.06.2024	47	171	1000		07.06.2024	40	150	1022		
09	08.06.2024	31	150	1008		08.06.2024	44	156	1022		
	09.06.2024	32	151	1008		09.06.2024	43	169	1028		
	10.06.2024	34	152	1008		10.06.2024	42	173	1028		
10	01.06.2024	55	140	1004	25	05.06.2024	57	153	1030		
	02.06.2024	55	142	1008		06.06.2024	58	141	1022		
	03.06.2024	55	142	1010		07.06.2024	54	149	1016		
	04.06.2024	55	140	1016	26	09.06.2024	30	120	1010		
11	06.06.2024	49	116	998		10.06.2024	31	132	1010		
	07.06.2024	52	120	994							
	08.06.2024	48	121	1000							
	09.06.2024	47	130	1002							
	10.06.2024	50	138	1000							
12	08.06.2024	30	124	1006							
	09.06.2024	32	130	1004							
	10.06.2024	32	139	1004							
13	10.06.2024	45	110	998							

II декада июня 2024 г.

Японское море

В первой половине декады над акваторией Японского моря сохранялось малоградиентное поле повышенного давления. 12 числа оно нарушалось неглубоким западным циклоном, который проследовал над северной частью моря с давлением в центре 1000 гПа. Циклон не вызвал усиления ветра и волн.

16 июня на северную часть акватории вышел еще один неглубокий циклон с давлением в центре 998 гПа. 17 числа он располагался над Татарским проливом с давлением в центре 994 гПа. Циклон сопровождался умеренными ветром и волнением. В дальнейшем над морем установилось поле повышенного давления.

Охотское море

11 июня на центральную часть Охотского моря с Татарского пролива переместился циклон с давлением в центре 1002 гПа. Он медленно двигался на восток, северо-восток. Максимального развития достиг 13 июня, вблизи северных Курил. Его глубина составляла 998 гПа. В дальнейшем циклон заполнялся, оставаясь малоподвижным. Окончательно заполнился 14 числа. Ветер в зоне циклона достигал 8–13 м/с, волнение не превышало 2 м.

14 июня на северо-запад Охотского моря с Хабаровского края переместилось небольшое ядро с давлением в центре 1012 гПа. Медленно двигаясь в южном направлении, оно усиливалось. 16 числа через северные острова Курильской гряды переместилось в Тихий океан с давлением в центре 1018 гПа.

С 16 июня погодные условия определялись противостоянием циклонической системы над Хабаровским краем и мощным антициклоном над севером Берингова моря, его отроги распространялись на большую часть Охотского моря. Некоторые циклоны системы выходили на Сахалин, но в дальнейшем блокировались антициклоном и медленно двигались на северо-восток, север. Так 17 июня на центральную часть Сахалина вышел циклон с давлением в центре 994 гПа, заполняясь, медленно двигался на северо-восток, север. 18 июня его пополнил следующий западный циклон с давлением в центре 998 гПа. 19 июня один из циклонов пробился на южную половину моря с давлением в центре 1004 гПа. В конце декады с северо-запада на акваторию моря распространилось поле высокого давления с ядром, мощность которого составляла 1016 гПа. На границе барических объектов ветер был сильным 10–15 м/с, волнение – до 2 м.

Берингово море

Во второй декаде над Беринговым морем доминировало антициклональное поле. В первой половине декады поле высокого давления было представлено отрогом тихоокеанского антициклона, а с 17 июня — самостоятельным антициклоном, установившимся вблизи побережья Чукотки с давлением в центре 1020-1022 гПа. В конце декады антициклон скатился к Командорским островам, разрушившись до 1016 гПа. На южной периферии антициклона ветер достигал 9-14 м/с, волнение — до 2 м.

Северо-западная часть Тихого океана

Циклон, который образовался 10 июня в районе с координатами 34° с. ш., 151° в. д. с давлением в центре 1004 гПа, двигался на северо-восток со скоростью 40 км/ч, углублялся. 14 июня по 48-й параллели покинул восточное полушарие с давлением в центре 996 гПа. Скорость ветра в зоне циклона достигала 15–20 м/с, волнение развивалось до 3–4 м.

В начале декады ядро с давлением в центре 1010–1012 гПа перемещалось над акваторией района чуть севернее 30-й параллели на восток со скоростью 30–40 км/ч. 14 числа по 33-й параллели переместилось в западное полушарие с давлением в центре 1014 гПа.

Циклон с давлением в центре 1000 гПа, образовавшийся южнее Японии 13 июня, незначительно углублялся, двигался на восток, северо-восток со скоростью 40-50 км/ч. 15 июня по 38-й параллели переместился в западное полушарие с давлением в центре 1006 гПа. Ветер в зоне циклона достигал 12-17 м/с, волнение развивалось до 2-3 м.

14 июня ядро с давлением в центре 1010 гПа, которое переместилось на акваторию района со стороны Японии, двигалось на восток со скоростью 20–30 км/ч. 17 числа в районе с координатами 32° с. ш., 170° в. д. оно разрушилось. Максимальное давление в его центре отмечалось 16 июня, составляло 1018 гПа.

Следующий циклон образовался вблизи юго-восточного побережья Японии 16 июня с давлением в центре 1002 гПа. Циклон двигался на восток, северо-восток со скоростью 40–50 км/ч,

углубился до 998 гПа, 19 июня по 40-й широте покинул восточное полушарие с давлением в центре 1000 гПа. Ветер в зоне циклона усиливался до 12–17 м/с, волнение развивалось до 2–3 м.

Следующий волновой циклон с давлением в центре 1000 гПа образовался 18 числа южнее Японии, двигался на восток, северо-восток со скоростью 40 км/ч. В конце декады вышел в район с координатами 42° с. ш., 160° в. д. с давлением в центре 996 гПа. Скорость ветра в зоне циклона достигала 15-20 м/с, волнение развивалось до 3-4 м.

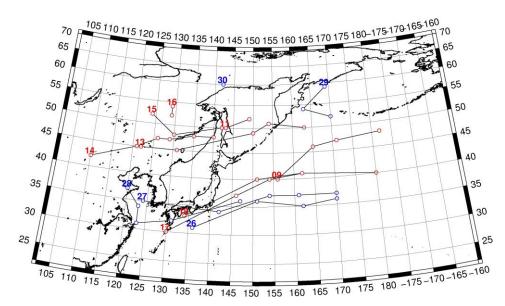


Рис. 1-2 Траектории движения циклонов и антициклонов во II декаде июня

Циклоны						Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
09	11.06.2024	40	156	1004	26	11.06.2024	31	136	1012		
	12.06.2024	46	165	994		12.06.2024	36	151	1014		
	13.06.2024	47	171	992		13.06.2024	35	162	1018		
	14.06.2024	48	182	996		14.06.2024	36	170	1016		
11	11.06.2024	50	143	1002	27	13.06.2024	35	124	1006		
	12.06.2024	52	149	1004		14.06.2024	34	142	1010		
13	11.06.2024	45	122	996		15.06.2024	37	154	1016		
	12.06.2024	45	131	1000		16.06.2024	37	161	1018		
	13.06.2024	49	150	1000		17.06.2024	37	170	1016		
	14.06.2024	51	154	1000	28	16.06.2024	37	120	1010		
	15.06.2024	50	163	1004		17.06.2024	34	123	1010		
14	12.06.2024	42	110	994		18.06.2024	31	123	1010		
	13.06.2024	45	121	996		19.06.2024	32	131	1010		
	14.06.2024	47	126	996		20.06.2024	36	147	1014		
	15.06.2024	47	129	1000	29	18.06.2024	59	169	1022		
	16.06.2024	48	135	998		19.06.2024	54	163	1020		
	17.06.2024	48	140	992		20.06.2024	52	170	1016		
15	16.06.2024	52	124	994	30	20.06.2024	60	142	1018		
	17.06.2024	48	130	992							

		Циклоны	I		Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление	
	18.06.2024	50	142	998						
16	18.06.2024	54	129	998						
	19.06.2024	52	129	1002						
17	15.06.2024	30	130	1002						
	16.06.2024	37	146	1002						
	17.06.2024	40	154	1000						
	18.06.2024	41	162	998						
	19.06.2024	40	180	1000						
18	18.06.2024	33	134	1000						
	19.06.2024	40	151	998						
	20.06.2024	41	162	994						

III декада июня 2024 г.

Японское море

В начале декады над Японским морем располагалось малоградиентное поле повышенного давления. 23 числа на южную часть акватории с Желтого моря вышел циклон с давлением в центре 996 гПа. Проследовал на восток, 24 числа, приблизившись к восточному побережью, повернул на север и замедлил движение. 25 июня он вышел на пролив Лаперуза с давлением в центре 1000 гПа. На акватории моря циклон вызвал незначительное усиление ветра до 9–14 м/с, волнение – до 2–3 м.

В дальнейшем над морем восстановилось поле повышенного давления. В конце месяца, 30 июня, с Желтого моря вышел циклон с давлением в центре 992 гПа. Он двигался на северо-восток со скоростью 50 км/ч, углублялся. В конце суток был вблизи о. Хоккайдо с давлением в центре 988 гПа. Циклон обусловил усиление ветра до 15–18 м/с, волнение до 3–4 м.

Охотское море

В первой половине декады над морем наблюдалось поле высокого давления с малоподвижным ядром, мощность которого составляла 1016 гПа.

26 июня на южную часть акватории с Японского моря переместился циклон с давлением в центре 998 гПа. Он медленно двигался на восток и вскоре через Курилы покинул акваторию моря с давлением в центре 994 гПа. В зоне циклона ветер в не превышал 9-14 м/с, волнение - не более 2 м.

27 июня на северо-западную часть Охотского моря вышел циклон с давлением в центре 998 гПа. В конце суток он переместился на Колыму. Следующий циклон вышел с Хабаровского края 29 числа с давлением в центре 996 гПа. Он двигался на север, северо-восток со скоростью 30 км/ч, 30 числа переместился на Магаданскую область с давлением в центре 990 гПа. Значительного усиления ветра и волн в зоне циклонов не наблюдалось.

Берингово море

В начале декады над Беринговым морем располагалось поле повышенного давления с ядром мощностью 1020 гПа на востоке акватории.

25 июня на акваторию моря с юга вышел углубляющийся циклон с давлением в центре 984 гПа. Он медленно двигался на север, северо-восток, 26 июня углубился до 976 гПа. В дальнейшем заполнялся, окончательно заполнился 30 июня на востоке акватории. Циклон вызвал

усиление ветра до 15–20 м/с, волнение до 4–5 м. В это время на западе моря восстановилось поле высокого давления.

Северо-западная часть Тихого океана

В течение декады над северо-западной частью Тихого океана преобладали процессы циклогенеза.

Циклон, который в конце второй декады вышел в район с координатами 42° с. ш., 160° в. д., продолжал двигаться на восток, северо-восток со скоростью 30 км/ч. 22 июня по 45-й параллели он покинул восточное полушарие с давлением в центре 1000 гПа (см. рис. 1-3). 21 июня ветер в зоне циклона оставался сильным до 15-20 м/с, волнение – до 3-4 м.

В период 21–22 июня над акваторией района примерно вдоль 38-й и 48-й параллелями проследовали два ядра с давлением в центре 1020 гПа. 23 июня вблизи 180-й долготы они разрушились.

21 июня южнее Японии на полярном фронте образовался циклон глубиной 998 гПа. Он начал перемещаться на восток, северо-восток со скоростью 40 км/ч, углублялся, 25 июня по 50-й широте пересек 180-й меридиан. Минимальное давление в его центре отмечалось 22 июня, составляло 988 гПа. В зоне циклона наблюдались сильный ветер до 18–23 м/с, волнение до 5–6 м.

24 числа с Японского моря на акваторию океана переместился циклон с давлением в центре 998 гПа. Без развития он двигался на восток со скоростью 30 км/ч. В его южном секторе скорость ветра возрастала до 9-14 м/с, волнение развивалось до 2-3 м. В дальнейшем циклон заполнялся, продолжая двигаться на восток. Окончательно заполнился 27 числа в районе с координатами 38° с. ш., 172° в. д.

25 июня с Охотского моря скатилось ядро с давлением в центре 1014 гПа. Двигаясь на юговосток со скоростью 30–40 км/ч, оно покинуло восточное полушарие примерно по 44-й широте с давлением в центре 1012 гПа.

26 июня с Охотского моря в северо-западную часть Тихого океана вышел циклон с давлением в центре 994 гПа. Двигался на восток со скоростью 30–40 км/ч, незначительно углублялся, 28 числа по 50-й параллели переместился в западное полушарие с давлением в центре 998 гПа. Минимальное давление в циклоне отмечалось 27 июня, составляло 990 гПа. Ветер в зоне циклона усиливался до 10–15 м/с, волнение – до 2–3 м.

27 числа с Японского моря переместилось ядро мощностью 1018 гПа. Двигалось со средней скоростью 30 км/ч на восток, северо-восток, усиливалось, в конце декады по 40-й широте покинуло восточное полушарие с давлением в центре 1026 гПа.

28 июня вблизи юго-восточного побережья Японии образовался следующий циклон с давлением 1006 гПа. Двигаясь на восток, северо-восток со скоростью 20-30 км/ч, циклон незначительно углублялся. 29 июня давление в его центре понизилось до 1000 гПа. В конце декады он находился в районе с координатами 45° с. ш., 157° в. д. с давлением в центре 1000 гПа. Ветер в зоне циклона усиливался до 12-17 м/с, волнение развивалось до 2-3 м.

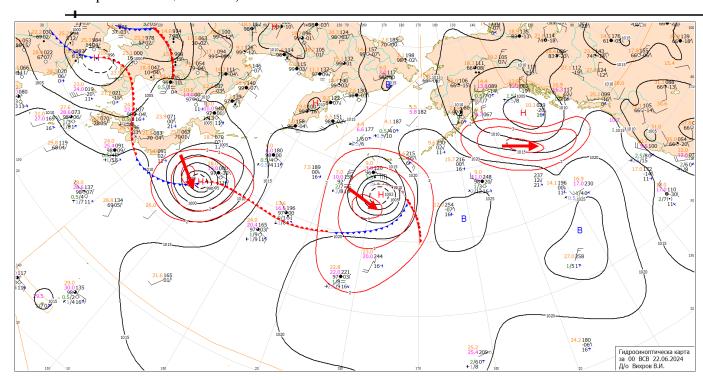


Рис. 1-3 Приземная карта за 00 BCB 22 июня 2024 г.

Рис. 1-4 Траектории движения циклонов и антициклонов в III декаде июня

Циклоны						Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Давление				
18	21.06.2024	43	171	996	28	21.06.2024	42	158	1016		
	22.06.2024	46	179	1002		22.06.2024	38	168	1020		
19	21.06.2024	33	137	998	29	21.06.2024	52	180	1016		
	22.06.2024	36	148	988	30	21.06.2024	55	143	1016		
	23.06.2024	37	157	994		22.06.2024	52	150	1016		
	24.06.2024	42	167	996		23.06.2024	55	149	1016		

Циклоны						Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
	25.06.2024	50	180	992		24.06.2024	54	148	1016		
20	22.06.2024	34	121	996		25.06.2024	52	158	1014		
	23.06.2024	34	133	994		26.06.2024	44	170	1014		
	24.06.2024	38	146	998	31	24.06.2024	43	110	1012		
	25.06.2024	38	156	1004		25.06.2024	41	113	1012		
	26.06.2024	38	163	1008		26.06.2024	34	126	1016		
21	22.06.2024	44	123	994		27.06.2024	36	143	1018		
	23.06.2024	44	129	996		28.06.2024	35	160	1020		
	24.06.2024	45	130	1002		29.06.2024	37	164	1024		
	25.06.2024	46	132	1004		30.06.2024	40	170	1024		
	26.06.2024	48	148	998	32	30.06.2024	51	121	1004		
	27.06.2024	48	160	990							
	28.06.2024	50	172	996							
33	27.06.2024	32	122	1010							
	28.06.2024	34	132	1008							
	29.06.2024	39	147	1004							
	30.06.2024	43	154	998							
34	28.06.2024	48	120	996							
	29.06.2024	48	126	996							
35	28.06.2024	52	130	998							
	29.06.2024	53	148	996							
	30.06.2024	59	150	994							
36	29.06.2024	34	129	996							
	30.06.2024	40	130	992							

1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных реанализа NCEP/NCAR, приведены ниже на рис. 1-5-1-7. Анализ термобарических полей выполнен на базе средних за месяц карт барической топографии для стандартного изобарического уровня 500~гПа, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне 850~гПа. Аномалии рассчитаны относительно средних многолетних значений за период 1981-2010~гг.

Региональный обзор

В июне средняя тропосфера над умеренными и тропическими широтами региона была преимущественно теплой – преобладали положительные аномалии геопотенциальных высот Н₅₀₀ от +2 до +4 дам. Распределение термобарических полей было близким к зональному. Полярная зона была занята чередующимися депрессиями и барическими гребнями с соответствующим распределением аномалий геопотенциальных высот. Преобладали меридиональные формы циркуляции. Наиболее глубокая депрессия установилась над северо-западной частью Охотского моря, о её глубине свидетельствует обширный очаг отрицательных аномалий геопотенциальных высот до -7 дам. Менее глубокие депрессии наблюдались над нижним течением Енисея и восточной частью Берингова моря. Им соответствуют очаги отрицательных аномалий геопотенциальных высот до -2...-3 дам. При этом образование депрессионного поля над Енисеем в июне не является обычным явлением, а для восточной части Берингова моря – характерно. Депрессии разделялись обширными гребнями. Первый из них тянулся от Забайкалья на среднее течение Лены и далее на бассейн Восточной Арктики. Второй, менее значительный, располагался над Камчаткой и прилегающей акваторией Тихого океана. Наиболее значительные положительные аномалии сформировались над центральной частью Западной Сибири, достигали +4...+5 дам, и над восточным сектором Российской Арктики, превышали +10 дам (рис. 1-5).

У земной поверхности над Восточной Азией барическое поле не имело ярко выраженных отклонений от среднего многолетнего. Амурская депрессия, занимая традиционное положение над средним течением Амура, была глубже нормы не более чем на 1 гПа. На столько же ниже нормы – атмосферное давление на юго-восточной периферии депрессии, над Приморским краем и Японским морем. Выше нормы на 2-3 гПа – давление над северо-востоком материка, включая Камчатку и Колыму, что обуславливалось частым «скатыванием» антициклонов из арктической зоны. Последняя занята полем высокого давления, с положительными аномалиями давления до 4-7 гПа. Крайняя западная часть региона, Центральная Сибирь, - в области пониженного давления; над нижним течением Оби ярко выражено депрессионное поле с отрицательными аномалиями давления до -3 гПа. Тихоокеанский бассейн, как и положено, оставался под воздействием субтропического максимума. Его положение и мощность близки к норме. При этом западный отрог в тропической части океана оставался относительно активным, а отрог, ориентированный на Охотское море, - разрушен. Взамен охотоморского отрога установилась связь с антициклонами, развивающимися над Восточной Арктикой и Колымой и пополняющими тихоокеанский максимум с севера. На пути следования приземных антициклонов над западной частью Берингова моря, Камчаткой фон атмосферного давления выше нормы на 1-3 гПа. Алеутская депрессия смещена в крайний северо-восточный сектор Тихого океана, на юго-восток от климатического положения, глубже нормы примерно на 3-4 гПа (рис. 1-6).

Японское море

В средней тропосфере акватория моря находилась на южной периферии высотной депрессии, в передней части ложбины; преобладал перенос воздуха с юго-запада. Межширотное барическое напряжение продолжало ослабевать. Южная часть акватории оставалась в относительно теплой воздушной массе — аномалии геопотенциальных высот изобарической

поверхности H_{500} в пределах +1...+2 дам. Север моря, находясь ближе к высотной депрессии, — в зоне относительно холодной воздушной массы с отрицательными аномалиями геопотенциальных высот до -1...-4 дам.

У земной поверхности над акваторией моря наблюдалось поле пониженного давления. Вся акватория в зоне слабых отрицательных аномалий атмосферного давления до -1 гПа.

Температура воздуха на уровне H_{850} (нижняя тропосфера) над морем была распределена от $+15\,^{\circ}\mathrm{C}$ на юге до $+6\,^{\circ}\mathrm{C}$ на севере. Для большей части акватории это состояние превышает норму примерно на $1\,^{\circ}\mathrm{C}$, для крайней северной части – ниже нормы на $1-2\,^{\circ}\mathrm{C}$. За месяц температура воздуха над морем выросла на $4-6\,^{\circ}\mathrm{C}$.

Охотское море

В средней тропосфере над северо-западной частью моря установилась глубокая депрессия, остальная часть акватории находилась под влиянием её передней части с преобладанием западного, юго-западного переноса воздуха. Воздушная масса над большей частью акватории была холодной — геопотенциальные высоты поверхности H_{500} ниже нормы на 1-7 дам. На востоке моря воздух был относительно теплый с положительными аномалиями геопотенциальных высот до +2 дам.

У земной поверхности юго-запад акватории находился под влиянием поля пониженного давления; здесь сформировались отрицательные аномалии атмосферного давления до -1 гПа. Над остальной акваторией — поле повышенного давления с преобладанием положительных аномалий атмосферного давления до +2 гПа.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от $+10~^{\circ}\mathrm{C}$ на юге до $+4~^{\circ}\mathrm{C}$ на северо-западе акватории. Это состояние для большей части моря ниже нормы, основной очаг холода над северо-западом акватории под высотной депрессией, с аномалией $-4~^{\circ}\mathrm{C}$. Над югом акватории и вблизи побережья Камчатки аномалии температуры воздуха слабые положительные до $+1~^{\circ}\mathrm{C}$. За месяц температура воздуха над морем повысилась на $5-6~^{\circ}\mathrm{C}$.

Берингово море

В средней тропосфере большая часть Берингова моря оставалась под воздействием депрессионного поля, запад акватории — в зоне влияния высотного барического гребня. В области депрессии воздушная масса была холодной — геопотенциальные высоты поверхности H_{500} ниже нормы на 1-2 дам. Над западной частью акватории воздух активно прогревался, аномалии геопотенциальных высот H_{500} здесь выше нормы на 1-3 дам. Незначительно теплее обычного было над крайним севером акватории — геопотенциальные высоты H_{500} выше нормы на 1-2 дам.

У поверхности земли большая часть моря оставалась под влиянием депрессии; запад, северо-запад акватории — в поле повышенного давления. Соответственно распределены аномалии атмосферного давления. На востоке, юго-востоке они отрицательные до -3 гПа, на западе, северо-западе — положительные до +2...+3 гПа.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от $+4^{\circ}$ С на юго-западе акватории до 0 °C на севере вблизи Анадырского залива. Для большей части моря это состояние незначительно отличается от климатического, но для юго-западной оно выше, а вблизи побережья Чукотки ниже нормы примерно на 1 °C. За месяц температура воздуха над морем повысилась на 5-6 °C.

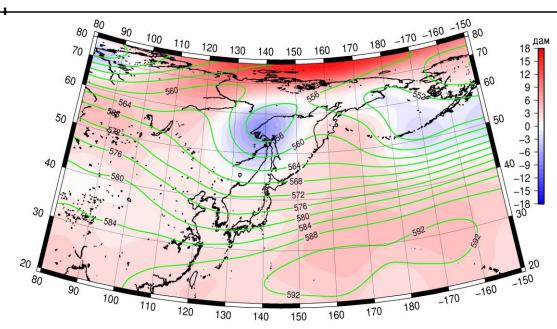


Рис. 1-5 Среднее поле H_{500} (изогипсы) и его аномалии (изополосы) в июне 2024 г. (дам)

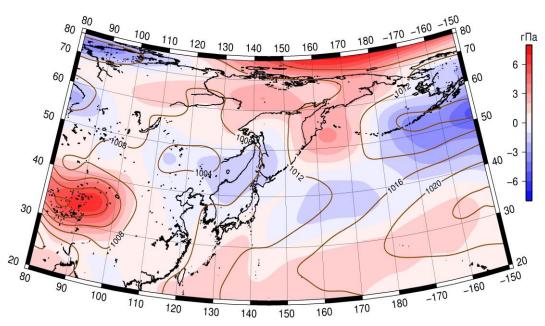


Рис. 1-6 Среднее поле атмосферного давления у поверхности земли (изобары) и его аномалии (изополосы) в июне 2024 г. (гПа)

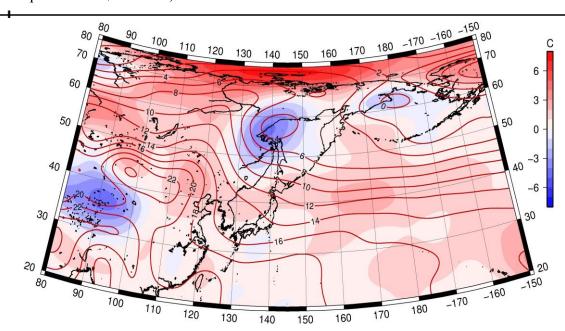


Рис. 1-7 Среднее поле T_{850} (изотермы) и его аномалии (изополосы) в июне 2024 г. (°С)

1.3 Региональные индексы циркуляции атмосферы

1.3.1 Зональный и меридиональный перенос воздуха над II е. с. р.

Характеристика основных воздушных течений в средней и нижней тропосфере за июнь $2024~\rm \Gamma$. выполнена на основе индексов атмосферной циркуляции, приведенных ниже в таблице и на рис. 1-8-1-10. В данном разделе для характеристики индексов принята следующая терминология: норма — ± 0.3 STD относительно нормы; незначительное отклонение от нормы — $\pm (0.4-0.7)$ STD; значительное отклонение от нормы — ≥ 2.0 STD. Аномалии рассчитаны относительно средних многолетних значений (нормы) за период $1981-2010~\rm \Gamma C$.

Японское море

В июне над Японским морем во всем слое тропосферы преобладал западно-восточный перенос воздуха (значения зональных индексов положительные). Интенсивность зональных течений во всем слое тропосферы превышала норму, в нижней тропосфере — незначительно (Кz равен 0,9STD и 0,6STD в средней тропосфере и у поверхности земли соответственно).

Интенсивность межширотного обмена над акваторией моря была близка к норме в среднем слое (|Km| равен -0,2STD) и незначительно слабее нормы у поверхности земли (|Km| равен -0,7STD). Баланс между меридиональными составляющими был незначительно нарушен в пользу северной компоненты обмена (Кm соответственно равен -0,4STD и -0,5STD). В среднем за месяц в средней тропосфере сформировалось преобладание движений воздуха с севера на юг (значение индекса отрицательное), у поверхности земли — с юга на север (значение индекса положительное).

Охотское море

Над Охотским морем в средней тропосфере движения воздуха с запада на восток оставались преобладающими (значение зонального индекса положительное), их интенсивность незначительно превышала норму (Kz равен 0,6STD). В нижней тропосфере сформировалось слабое преобладание движений с востока на запад (значение зонального индекса отрицательное), интенсивность восточного переноса превышала норму (Kz равен -1,5STD).

Интенсивность межширотного обмена в средней тропосфере над морем оставалась относительно слабой (|Km| равен -0,7STD); при этом многолетний баланс между меридиональными составляющими значительно нарушен а пользу южной компоненты обмена (Кm равен 2,0STD). В нижнем слое межширотный обмен был активным (|Km| составлял 1,0STD), в большей мере за счет южной составляющей (Кm равен 1,4STD). В течение месяца во всем слое тропосферы преобладали движения воздуха с юга (значения меридиональных индексов положительные).

Берингово море

Над Беринговым морем в средней тропосфере движения воздуха с запада на восток оставались преобладающими (значение зонального индекса положительное), их интенсивность близка к норме (Kz равен 0,6STD). В нижней тропосфере сформировалось преобладание движений с востока на запад (значение зонального индекса отрицательное), интенсивность восточного переноса превышала норму (Kz равен -0,9STD).

Интенсивность межширотного обмена в среднем слое тропосферы над морем незначительно превышала норму, у поверхности земли была близка к норме (|Km| составлял 0,4STD и 0,0STD в среднем слое и у поверхности земли соответственно). Многолетний баланс между меридиональными составляющими был нарушен в пользу северной компоненты обмена

(Кт равен -0,7STD и -1,3STD соответственно в среднем слое и у поверхности земли). Во всей тропосфере в течение месяца сформировалось преобладание движений воздуха с севера (значения меридиональных индексов отрицательные).

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

	Уровень		Апрель			Май		Июнь		
Индекс*	(высота)	значение	ASTD**	STD**	значение	ASTD**	STD**	значение	ASTD**	STD**
Кz Ям		19336	-0.2	3723	17270	0.5	3428	12209	0.9	2632
Кz Ом		9985	0.3	3291	8980	0.5	2463	6368	0.6	2529
Кz Бм		12356	0.9	4725	11460	1.9	2969	3766	-0.1	3172
Kz 35_50		18056	-0.8	2775	16944	-0.1	2112	14108	1.0	1068
Kz 50_70		10060	1.8	2040	6106	0.2	1504	2635	-2.1	1103
Kz 35_70		13356	0.8	994	10455	-0.4	714	7640	-1.8	537
Кт Ям		-501	0.4	1950	-1475	-0.2	1479	-865	-0.4	1370
Кт Ом		677	0.3	1586	-7	0.4	1795	1110	2.0	1387
Кт Бм	500 гПа	-415	-0.6	1228	-352	-0.1	1305	-1478	-0.7	1155
Km 35_50	300 111a	15	0.9	689	-586	0.6	414	-558	-0.5	379
Km 50_70		-237	0.3	497	-647	-0.8	341	-646	-0.6	356
Km 35_70		-94	0.8	445	-566	-0.2	243	-536	-0.6	299
Кт Ям		1410	-1.0	1607	3344	0.4	1290	1896	-0.2	1017
Кт Ом		1885	-0.7	1292	2308	-0.6	1396	2276	-0.7	1698
Кт Бм		2271	-0.6	1472	2911	-0.4	1521	3983	0.4	1368
Km 35_50		2568	-2.1	637	3804	0.6	657	2420	-0.8	486
Km 50_70		2564	-1.0	779	3695	0.9	667	3858	0.7	764
Km 35_70		2552	-1.8	563	3742	1.0	528	3199	0.2	568
Кz Ям		2387	-1.0	1201	3367	-0.2	1188	2428	0.6	1091
Кz Ом		1432	1.2	1379	206	-0.4	824	-138	-1.5	838
Кz Бм		3468	1.4	2355	1377	0.8	1358	-364	-0.9	1345
Kz 35_50		2450	-0.6	1177	3785	0.8	1117	2231	0.4	926
Kz 50_70		771	1.5	1263	-831	0.1	873	-912	-1.0	649
Kz 35_70		1348	1.0	658	1158	0.7	527	552	-0.3	512
Кт Ям		522	0.6	887	479	-0.7	563	1641	-0.5	612
Кт Ом		175	0.5	929	-35	-0.9	745	1646	1.4	535
Кт Бм	1000 гПа	294	0.8	875	28	0.4	652	-733	-1.3	702
Km 35_50	10001111	611	1.2	418	542	0.9	234	446	-1.5	265
Km 50_70		-197	0.6	313	-154	0.0	209	72	-0.5	182
Km 35_70		175	1.0	307	165	0.5	159	258	-1.2	185
Кт Ям		833	-0.7	608	1020	-1.0	518	2260	-0.7	775
Кт Ом		1076	-0.9	784	1230	-0.8	695	2645	1.0	608
Кт Бм		1899	-0.5	1036	1549	-0.7	908	1759	0.0	844
Km 35_50		2205	0.7	278	2111	0.2	299	2440	0.1	359
Km 50_70]	1636	-1.1	442	1513	-1.3	334	1780	-0.1	234
Km 35_70		1881	-0.5	299	1773	-0.7	278	2033	0.0	214

^{*} Описание индексов приведено в разделе «Терминология».

^{**} Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1981–2010 гг.

Умеренные широты между 35° и 50° с. ш. над II е. с. р.

В зоне умеренных широт между 35° и 50° с. ш. над II е. с. р. перенос воздуха с запада на восток оставался преобладающим во всем слое тропосферы (зональные индексы положительные). Его интенсивность в среднем слое тропосферы превышала климатическую (Kz - 1,0STD), у поверхности земли незначительно превышала норму (Kz равен 0,6STD).

Интенсивность меридиональных движений в указанной широтной зоне в средней тропосфере была слабой (|Km| равен -0,8STD), что в большей мере определялось ослаблением южной составляющей обмена (Кт — -0,5STD); количество движений воздуха с севера осталось преобладающим (значение Кт отрицательное). У поверхности земли интенсивность меридиональных движений воздуха была близка к норме (|Km| равен 0,1STD), многолетний баланс между меридиональными составляющими нарушен в пользу северной компоненты обмена (Кт — -1,5STD); в течение месяца незначительно преобладали движения воздуха с юга (значение Кт положительное).

Широтная зона 50-70° с. ш. над II е. с. р.

В широтной зоне 50– 70° с. ш. над II е. с. р. в средней тропосфере перенос воздуха с запада на восток оставался преобладающим (значение зонального индекса положительное), но его интенсивность была слабой (Kz составлял -2,1STD). В нижнем слое преобладал перенос с востока на запад (значение зонального индекса отрицательное), интенсивность восточного переноса превышала норму (Kz равен -1,0STD).

Интенсивность межширотного обмена в средней тропосфере в указанной широтной зоне незначительно превышала норму (|Km| равен 0,7STD), что определялось усилением северной составляющей обмена (Km – -0,6STD). У поверхности земли интенсивность межширотного обмена была близка к норме (|Km| равен -0,1STD), многолетний баланс между меридиональными составляющими незначительно нарушен в пользу северной компоненты обмена (Кт равен -0,5STD). В средней тропосфере в течение месяца сохранилось преобладание движений воздуха с севера (значение меридионального индекса отрицательное), в нижнем слое – с юга, преобладание было незначительным.

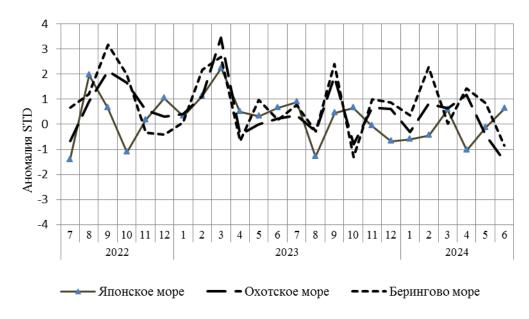


Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Kz) в нижней тропосфере над дальневосточными морями

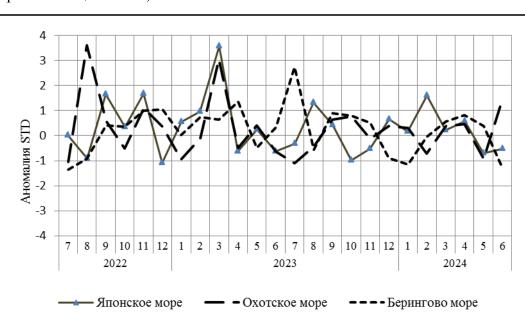


Рис. 1-9 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кm) в нижней тропосфере над дальневосточными морями

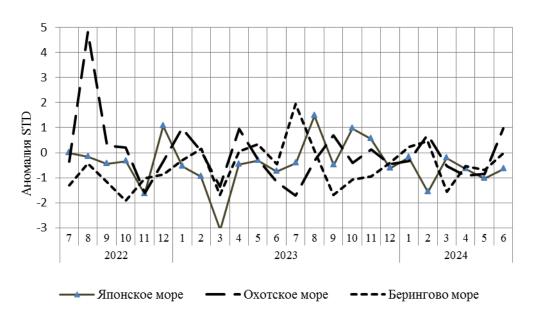


Рис. 1-10 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Km|) в нижней тропосфере над дальневосточными морями

1.3.2 Индекс засушливости Педя S для станций Приморского и Хабаровского краёв 1

Приморский край	Март	Апрель	Май	Июнь
Анучино	1.3	2.7	-1.6	-0.5
Астраханка	0.5	2.3	-1.8	-1.8
Богополь	0.3	1.5	-1.2	-0.2
Владивосток	0.3	2.6	0.9	1.5
Дальнереченск	0.2	2.7	0.8	-4.8
Пограничный	0.4	1.2	-2.1	-0.8
Посьет	0.8	2.7	1.3	1.9
Преображение	-1.1	2.6	-0.3	0.7
Рощино	1.1	4.0	0.3	-5.5
Рудная Пристань	-0.2	2.4	0.6	0.1
Сосуново	-2.0	2.7	0.2	-2.3
Терней	0.6	3.0	0.9	-0.7
Тимирязевский	0.5	1.8	-1.0	-0.1
Турий Рог		3.0	-4.2	0.8
Хабаровский край	Март	Апрель	Май	Июнь
Аян	-1.3	1.1	1.1	-2.3
Гвасюги	0.7	3.2	-0.8	-2.6
Екатерино-Никольское	0.3	3.1	0.9	-1.4
Им. Полины Осипенко	0.7	2.0	-0.4	-3.9
Комсомольск-на-Амуре	0.2	2.0	-0.3	-3.3
Нелькан	-4.3	-1.5	2.4	-0.8
Николаевск-на-Амуре	1.4	2.4	1.6	-3.1
Охотск	2.3	0.7	1.8	-3.8
Сковородино	0.6	-4.3	1.6	1.0
Софийский Прииск	-0.5	0.2	0.2	-2.2
Сутур	0.3	1.4	-0.9	-0.3
Тумнин	1.0	4.5	-0.2	-2.1
Усть-Нюкжа	-3.1	-1.0	2.6	2.2
Хабаровск_	1.4	4.0	0.1	-3.5
Хуларин	1.4	2.0	1.2	-2.4
Чекунда	0.2	-0.1	-0.2	-0.3
Чумикан	0.5	-1.2	1.8	0.1

Положительные значения индекса соответствуют засушливым условиям, отрицательные — условиям достаточного (избыточного) увлажнения при пониженном фоне температур. Для месячных значений S принято считать, что

- если 1<S<2, то засуха слабая, если -1>S>-2, то увлажнение слабое;
- если 2<S<3, то засуха умеренная, если -2>S>-3, то увлажнение умеренное;
- если S>3, то засуха сильная, если S<-3, то увлажнение сильное.

-

¹ См. раздел «Терминология бюллетеня».

1.4 Аналог погоды на июнь 2024 г. для Дальнего Востока

Аналог подбирается для усредненных за месяц полей атмосферного давления у поверхности земли и геопотенциальных высот H_{500} по II е. с. р. Объективным критерием подбора являлся коэффициент корреляции. Учитывалась динамика процесса, барические поля за предшествующие месяцы использовались с весовыми коэффициентами.

Дата аналога для июня 2024 г. – июнь 1977 г.

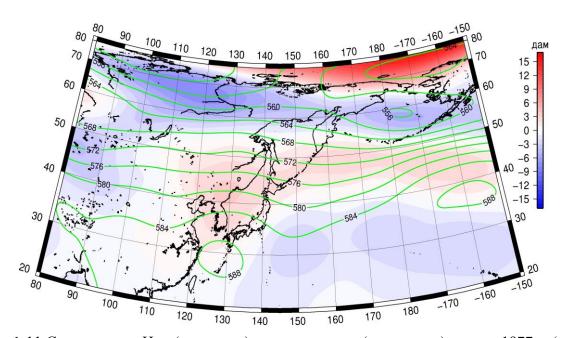


Рис. 1-11 Среднее поле H_{500} (изолинии) и его аномалии (изополосы) в июле 1977 г. (дам)

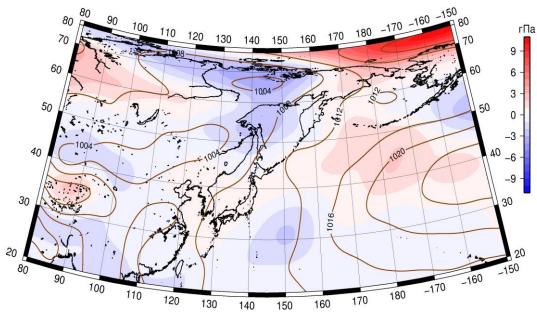


Рис. 1-12 Среднее поле атмосферного давления у поверхности земли (изолинии) и его аномалии (изополосы) в июле 1977 г. (гПа)

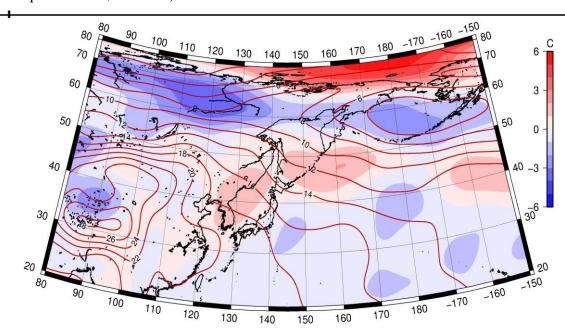


Рис. 1-13 Среднее поле T_{850} (изолинии) и его аномалии (изополосы) в июле 1977 г. (°С)