1 Метеорологические условия

1.1 Синоптический обзор

Кинематическая карта, приведенная на рис. 1-1, отражает траектории циклонов (синий цвет) и антициклонов (красный цвет) в течение месяца. Положение центров приведено за срок 00 ВСВ каждых суток. За барическими объектами закреплен номер, по которому из ниже следующей таблицы можно определить точные координаты и давление в центре объектов в срок 00 ВСВ каждых суток.

I декада мая 2025 г.

Японское море

В начале первой декады на западную часть Японского моря вышел циклон с давлением в центре $1000~\rm r\Pi a$. Двигаясь на северо-восток со скоростью $30~\rm km/q$, $3~\rm mas$ он переместился на территорию Приморского края с давлением в центре $994~\rm r\Pi a$. Скорость ветра на акватории моря возросла до $9-14~\rm m/q$, волнение - до $2~\rm m$.

Во второй половине декады над большей частью акватории доминировало поле повышенного давления. В самом конце декады, 10 мая, с Желтого моря вышел циклон с давлением в центре 990 гПа. Он двигался на северо-восток со скоростью 40 км/ч, в конце суток, не меняя интенсивности, подошел к о. Хоккайдо. Циклон вызвал усиление ветра до 13-18 м/с, волнение до 2-3 м.

Охотское море

В начале декады над Охотским морем располагалось поле высокого давления. С 3 числа погодные условия определялись влиянием циклона, развивающегося над Хабаровским краем. 4 мая циклон вышел на северо-запад моря с давлением в центре 994 гПа. Оставаясь на месте, начал заполняться, окончательно заполнился 6 мая. Скорость ветра с этим процессом возрастала до 12–17 м/с, волнение развивалось до 2–3 м.

6 мая за счет раздвоения южного циклона вблизи западного побережья Камчатки образовался циклон с давлением в центре 990 гПа. Он медленно двигался на север, затем вдоль северного побережья моря на запад, заполнялся. На картах погоды прослеживался над севером акватории до 8 мая. В дальнейшем восстановилось поле повышенного давления.

Берингово море

В первой половине декады над большей частью Берингова моря погодные условия определялись полем повышенного давления. 6 мая к Командорским островам вышел южный циклон с давлением в центре 988 гПа. Основной его центр перемещался на северо-восток вдоль восточного побережья Камчатки со скоростью 30 км/ч, обуславливая на акватории моря ветер до 15–18 м/с, волнение до 3–4 м. В период 7–8 мая, заполняясь, циклон двигался на восток, северовосток над западной частью акватории, 8 мая прекратил свое существование.

9 мая на юг Берингова моря вышел обширный тихоокеанский циклон с давлением в центре 986 гПа. Он двигался на восток, северо-восток со скоростью 50-60 км/ч. Над восточной частью моря развернулся на север, северо-запад, замедлил движение до 20 км/ч, начал заполняться. К концу суток 10 мая заполнился до 1000 гПа. Циклон вызвал усиление ветра до 12-17 м/с, волнение до 2-3 м.

Северо-западная часть Тихого океана

Циклон с давлением в центре 996 гПа, он в конце апреля вышел на центральную часть района, двигался в восточном направлении со скоростью 40 км/ч, заполнялся. Ветер в зоне

циклона достигал 15–18 м/с, волнение развивалось до 4–5 м. 2 мая циклон регенерировал, вновь углубился до 996 гПа, и по 49-й параллели переместился в западное полушарие.

Антициклон с давлением в центре 1026 гПа, который 1 мая вышел в северо-западную часть Тихого океана с Японского моря, двигался на восток со скоростью 30–40 км/ч, усиливался. 5 числа по 40-й параллели покинул восточное полушарие с давлением в центре 1034 гПа.

2 мая южнее Японии образовался волновой циклон с давлением 1004 гПа. Он перемещался на восток, северо-восток со скоростью 40-50 км/ч; углубился до 998 гПа, но уже 3 мая начал заполняться. 4 мая в районе с координатами 40° с. ш., 150° в. д. утратил самостоятельную циркуляцию. В период 2-3 мая в зоне действия циклона ветер усиливался до 13-18 м/с, волнение – до 3-4 м.

Следующий циклон вышел на акваторию района с южной части Японского моря 4 мая с давлением в центре 1004 гПа. Двигаясь на северо-восток со скоростью 40 км/ч, он углублялся. 7 числа вышел в район Командорских островов с давлением в центре 992 гПа. Минимальное давление в центре циклона — 988 гПа, отмечалось 6 мая, когда циклон находился вблизи юговосточного побережья Камчатки. Ветер в зоне циклона достигал 18—23 м/с, волнение развивалось до 5—6 м. 7 мая циклон вышел на западную часть Берингова моря, заполнялся, утратил влияние на погодные условия района.

5 мая с Восточного Китая в северо-западную часть Тихого океана вышел молодой циклон с давлением в центре 1002 гПа. Двигался на восток со скоростью 40–50 км/ч, развивался. 6–7 мая пересек акваторию района с юго-запада на северо-восток, углубился до 984 гПа; скорость перемещения возросла до 60 км/ч. 9 числа циклон вышел в Берингово море с давлением в центре 986 гПа. Скорость ветра в зоне циклона достигала 18–23 м/с, волнение развивалось до 5–6 м.

8 мая с Японского моря в северо-западную часть Тихого океана вышел антициклон мощностью 1022 гПа. Двигался на восток со скоростью 30 км/ч с давлением в центре 1024–1026 гПа, в конце декады вышел в район с координатами 35° с. ш., 160° в. д.

Циклон, образовавшийся на полярном фронте 9 мая в районе с координатами 34° с. ш., 163° в. д., с давлением в центре 1016 гПа двигался на северо-восток со скоростью 60 км/ч. 10 числа пересек 180-й меридиан по 42-й параллели с давлением в центре 998 гПа. Циклон сопровождался сильным ветром до 15-20 м/с, волнением до 3-4 м.

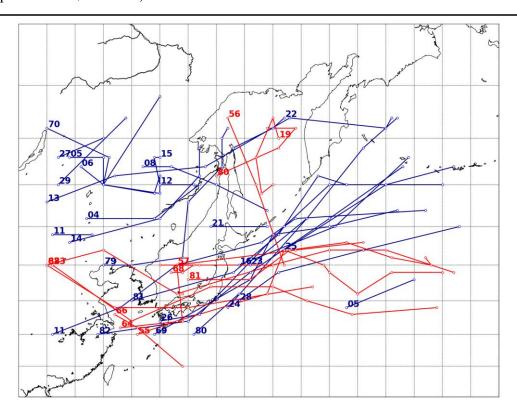


Рис. 1-1 Траектории движения циклонов и антициклонов в мае, траектории циклонов – синий трек, антициклонов – красный трек

Координаты центров циклонов и антициклонов и давление в их центрах в мае (в срок 00 ВСВ)											
Циклоны						Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
5	28.04.2025	53	114	990	55	12.05.2025	30	126	1014		
5	29.04.2025	53	120	988	55	13.05.2025	32	133	1018		
5	30.04.2025	50	120	1000	55	14.05.2025	36	149	1022		
5	01.05.2025	49	130	1004	55	15.05.2025	42	152	1028		
5	02.05.2025	51	130	1002	55	16.05.2025	40	159	1030		
11	08.05.2025	30	111	1000	55	17.05.2025	39	160	1032		
11	09.05.2025	34	123	998	55	18.05.2025	36	165	1030		
11	10.05.2025	40	133	990	55	19.05.2025	39	171	1030		
11	11.05.2025	43	148	986	55	20.05.2025	39	180	1030		
11	12.05.2025	46	154	992	56	13.05.2025	57	142	1016		
11	13.05.2025	47	177	994	56	14.05.2025	50	147	1024		
79	30.04.2025	40	120	1002	56	15.05.2025	40	152	1028		
79	01.05.2025	40	125	1002	57	23.05.2025	40	133	1018		
79	02.05.2025	41	134	1000	57	24.05.2025	42	154	1024		
79	03.05.2025	48	135	994	57	25.05.2025	43	166	1026		
79	04.05.2025	52	141	992	58	26.05.2025	36	134	1020		
79	05.05.2025	55	141	996	63	24.05.2025	40	110	1022		
79	06.05.2025	56	142	1002	63	25.05.2025	42	120	1016		
80	02.05.2025	30	136	1004	63	26.05.2025	36	133	1020		
80	03.05.2025	36	144	1000	63	27.05.2025	40	150	1026		

Координаты центров циклонов и антициклонов и давление в их центрах в мае (в срок 00 ВСВ)											
	Циклоны						Антициклоны				
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
81	03.05.2025	35	125	1006	63	28.05.2025	42	160	1030		
81	04.05.2025	39	143	1004	63	29.05.2025	42	170	1028		
81	05.05.2025	44	151	1000	63	30.05.2025	39	182	1024		
81	06.05.2025	51	158	988	64	26.05.2025	31	123	1020		
81	07.05.2025	50	163	996	64	27.05.2025	32	134	1020		
82	05.05.2025	30	119	1004	64	28.05.2025	40	133	1022		
82	06.05.2025	32	135	998	64	29.05.2025	40	137	1020		
82	07.05.2025	39	146	988	64	30.05.2025	40	150	1018		
82	08.05.2025	46	160	990	66	30.05.2025	33	122	1016		
82	09.05.2025	52	173	986	66	31.05.2025	31	126	1014		
69	28.04.2025	30	129	1004	66	01.06.2025	25	134	1012		
69	29.04.2025	38	146	986	68	27.05.2025	39	132	1020		
69	30.04.2025	44	150	982	68	28.05.2025	39	134	1020		
69	01.05.2025	45	160	996	68	29.05.2025	40	136	1020		
69	02.05.2025	47	172	1002	68	30.05.2025	40	130	1016		
70	28.04.2025	56	110	998	80	28.04.2025	51	140	1014		
70	29.04.2025	53	121	988	80	29.04.2025	54	151	1022		
70	30.04.2025	50	120	1000	80	30.04.2025	56	154	1022		
70	01.05.2025	49	129	1004	80	01.05.2025	56	149	1020		
70	02.05.2025	51	130	1002	81	30.04.2025	38	135	1020		
4	08.05.2025	46	117	1000	81	01.05.2025	38	146	1026		
4	09.05.2025	46	129	1008	81	02.05.2025	42	153	1028		
4	10.05.2025	50	137	1004	81	03.05.2025	43	163	1028		
5	09.05.2025	34	163	1016	81	04.05.2025	41	171	1030		
5	10.05.2025	38	175	1006	81	05.05.2025	40	178	1034		
6	12.05.2025	52	116	992	81	06.05.2025	41	177	1036		
6	13.05.2025	50	120	996	82	03.05.2025	40	110	1022		
6	14.05.2025	59	130	996	82	04.05.2025	34	122	1016		
8	10.05.2025	52	127	992	82	05.05.2025	34	135	1016		
8	11.05.2025	52	132	992	82	06.05.2025	37	157	1024		
8	12.05.2025	50	140	994	83	06.05.2025	40	111	1018		
8	13.05.2025	47	149	1008	83	07.05.2025	32	125	1014		
11	12.05.2025	44	111	992	83	08.05.2025	37	139	1020		
11	13.05.2025	44	118	996	83	09.05.2025	37	150	1028		
12	14.05.2025	50	130	1002	83	10.05.2025	35	156	1024		
12	15.05.2025	50	136	1006	83	11.05.2025	33	164	1020		
13	14.05.2025	48	110	1002	83	12.05.2025	34	179	1024		
13	15.05.2025	51	122	1000	19	28.05.2025	55	151	1022		
13	16.05.2025	52	138	996	19	29.05.2025	57	150	1020		
13	17.05.2025	57	153	996	19	30.05.2025	53	147	1020		
13	18.05.2025	56	170	1002	19	31.05.2025	49	148	1022		
13	19.05.2025	57	171	1010	19	01.06.2025	50	150	1014		



Рис. 1-2 Приземная карта за 00 ВСВ 7 мая 2025 г.

II декада мая 2025 г.

Японское море

В первой половине декады над акваторией Японского моря преимущественно сохранялось поле повышенного давления.

17 мая по южной части моря проследовал циклон с давлением в центре 1000 гПа. Следом за ним в конце суток 17 числа на центральную часть акватории вышел ещё один циклон с давлением в центре 998 гПа. Последний перемещался на северо-восток со скоростью 60 км/ч, 18 мая втянулся в циркуляцию циклонической системы, развивающейся над средним течением Амура.

В конце декады, 20 мая, по северной части моря проследовал циклон с давлением 1000 гПа.

В течение декады скорость ветра преимущественно была в пределах 8-13~м/c, волнение – до 1-2~м.

Охотское море

В начале декады вблизи Курильской гряды проследовал тихоокеанский циклон с давлением в центре 984-988 гПа. На юге моря он обусловил усиление ветра до 15-20 м/с, волнение до 2-3 м.

В период 12–13 мая над южной частью моря прошел частный циклон с давлением в центре 1002–1004 гПа, не вызвав усиления ветра и волн. Над севером акватории в этот период образовался антициклон с давлением в центре 1012 гПа. Двигаясь медленно на юг, он усиливался, 15 числа через центральную часть Курильской гряды переместился на акваторию Тихого океана с давлением в центре 1024 гПа.

В период 14-18 мая погодные условия определялись передней частью циклонической системы, развивающейся над средним течением Амура и Хабаровским краем. Один из циклонов с давлением в центре $996\ \Gamma\Pi a\ 16$ мая проследовал на восток, северо-восток со скоростью $20-30\ \text{км/ч}$ над севером моря. Скорость ветров южной четверти над Охотским морем достигала $10-15\ \text{m/c}$,

волнение – преимущественно до 2 м; 18 мая ветер усиливался до 15-20 м/с, волнение развивалось до 3-4 м.

20 мая на северо-востоке акватории образовался неглубокий частный циклон с давлением в центре 1000 гПа, обусловив разряжение барического напряжения.

Берингово море

Циклон, который в конце первой декады находился на севере моря, 11 мая заполнился, а на юго-восток акватории вышел следующий тихоокеанский циклон глубиной 988 гПа. Он начал медленно двигаться на север, северо-запад. Минимальное давление в его центре отмечалось 12 мая и составляло 976 гПа. В дальнейшем циклон заполнялся, 15 мая сменил направление движения на южное, заполнился окончательно 16 числа вблизи центральных островов Алеутской гряды. В период максимального развития скорость ветра в зоне действия циклона достигала 18–23 м/с, волнение развивалось до 3–4 м.

В конце суток 15 мая на крайний юго-восток моря вышел циклон с давлением в центре 990 гПа. Двигался на север, северо-запад со скоростью 20 км/ч, заполнялся. 17 мая вышел на Аляску с давлением в центре 1000 гПа. Значительного усиления ветра и волн с этим циклоном не наблюдалось.

В период 16-17 мая по акватории моря проследовал гребень тихоокеанского антициклона.

17 мая с Охотского моря на запад Берингова моря переместился циклон с давлением в центре 1000 гПа. Он двигался на восток со скоростью 30 км/ч без развития, не вызывая существенного усиления ветра и волн. Циклон заполнился 20 мая вблизи 180-го меридиана.

Северо-западная часть Тихого океана

Антициклон, который вышел в северо-западную часть Тихого океана с Японского моря 8 мая, продолжал двигаться в восточном направлении со скоростью 40-50 км/ч, 13 числа по 34-й параллели переместился в западное полушарие с давлением в центре 1024 гПа.

11 мая с Японского моря в северо-западную часть Тихого океана переместился циклон с давлением в центре 986 гПа. 11 мая он двигался вдоль Курильской гряды на северо-восток, а в дальнейшем — на восток, северо-восток со скоростью 30–40 км/ч. 12 мая начал заполняться, 13 числа по 48-й параллели покинул восточное полушарие с давлением в центре 992 гПа. Скорость ветра в зоне циклона достигала 15–20 м/с, волнение развивалось до 3–4 м.

12 мая с Восточного Китая на акваторию северо-западной части Тихого океана переместился слабый антициклон с давлением в центре 1014 гПа. Двигаясь на восток, северовосток со скоростью 40 км/ч, он усиливался. 15-16 мая находился над центральной частью района, усилившись до 1030 гПа, а к 17 мая – до 1032 гПа. К этому времени значительно увеличился по размерам. 18 мая антициклон вновь начал двигаться на восток со скоростью 20-30 км/ч. 20 числа по 39-й параллели переместился в западное полушарие с давлением в центре 1030 гПа.

19 мая на полярном фронте в районе с координатами 42° с. ш, 152° в. д. образовался молодой циклон глубиной 1006 гПа. Двигаясь на северо-восток со скоростью 60-70 км/ч, он углублялся; в конце декады находился в районе с координатами 52° с. ш., 177° в. д. с давлением в центре 992 гПа. Ветер в зоне циклона усиливался до 15-20 м/с, волнение развивалось до 3-4 м.

20 мая вблизи восточного побережья Японии на 40° с. ш. образовался волновой циклон, получивший развитие. В конце суток он находился в районе с координатами 42° с. ш, 152° в. д. с давлением в центре 1004 гПа.

+

III декада мая 2025 г.

Японское море

В начале третьей декады над севером акватории проследовал частный циклон с давлением в центре $1006\ {
m r}$ Па, не вызвавший усиления ветра и волн. Затем восстановилось поле повышенного давления.

В период 24–25 мая над Японией и крайней южной частью Японского моря проследовал фронтальный циклон с давлением в центре 998-1000 гПа. Он обусловил усиление ветров северовосточного, северного направлений до 10-14 м/с, волнение до 2-3 м.

26 мая в тылу циклона по южной части моря прошел антициклон с давлением в центре 1022 гПа. В дальнейшем до конца декады над морем сохранялось поле повышенного давления.

Охотское море

В начале декады над Охотским морем наблюдалось поле пониженного давления с неглубоким циклоном с давлением в центре 1008 гПа над северной частью моря.

В середине декады установилось поле повышенного давления с ядром над восточной частью акватории с давлением в центре 1016—1020 гПа. 28 мая над морем образовался ещё один антициклон с давлением в центре 1022 гПа, он сохранял свое влияние на погодные условия Охотского моря до конца декады, медленно скатываясь на юго-восток.

Берингово море

- 21 мая на юго-восточную часть акватории вышел тихоокеанский циклон с давлением в центре 992 гПа, обуславливая усиление ветра до 15–18 м/с, волнение до 2–3 м. Циклон двигался на восток, северо-восток со скоростью 30–40 км/ч, 22 мая переместился на Аляску.
- 22 мая на юг центральной части моря вышел следующий циклон с давлением в центре 1000 гПа, без развития двигался на восток со скоростью 30–40 км/ч. В зоне циклона ветер усиливался до 15–18 м/с, волнение развивалось до 2–3 м. 23 мая циклон переместился на северовосточную часть Тихого океана, утратив влияние на погодные условия Берингова моря.
- 23 мая на север центральной части моря с Чукотки скатилось ядро с давлением в центре 1022 гПа. Вскоре оно пополнило мощный тихоокеанский антициклон, в виде гребня система перемещалась на восток, 24 мая располагалась над крайней восточной частью моря.
- В конце суток 23 мая к Командорским островам вышел глубокий южный циклон с давлением в центре $982~\text{г}\Pi a$. На западе акватории ветер усилился до 18-23~м/c, волнение возросло до 5-6~m. 24 мая, незначительно заполняясь, циклон перемещался над западной частью моря на восток, северо-восток со скоростью 30~км/ч. 26~мая был над юго-восточной частью моря, заполнившись до $992~\text{г}\Pi a$.
- 31 мая с Чукотки на северную часть моря вышел циклон с давлением в центре 982 гПа. Заполняясь, остановился над севером акватории. Циклон вызвал усиление ветра до 15-20 м/с, волнение до 3-4 м.

Северо-западная часть Тихого океана

В течение третьей декады над северо-западной частью Тихого океана отмечался активный циклогенез.

Циклон, который в конце второй декады находился в районе с координатами 42° с. ш, 152° в. д. с давлением в центре 1004 гПа, без значительного развития двигался на восток, северо-восток со скоростью 60 км/ч. В зоне циклона наблюдались усиление ветра до 15-18 м/с, волнение до 2-3 м. 22 мая циклон переместился в Берингово море с давлением в центре 1000 гПа.

Следующий циклон образовался 22 мая вблизи юго-восточного побережья Японии в системе полярного фронта. Двигаясь на северо-восток со скоростью 60 км/ч, он углублялся. 24 числа вышел на юго-западную часть Берингова моря с давлением в центре 982 гПа. В период 23–24 мая в зоне циклона наблюдались штормовые условия: ветер до 20–25 м/с, волнение до 6–7 м.

23 мая с Японского моря в северо-западную часть Тихого океана переместилось ядро с давлением в центре 1020 гПа. Оно двигалось на восток со скоростью 40 км/ч, усиливалось, 25 числа вошло в систему тихоокеанского антициклона.

25 мая на акваторию района с Японского моря переместился циклон с давлением в центре $1000~\rm r\Pi a$. Двигаясь на северо-восток со скоростью $40-50~\rm km/v$, он проследовал вдоль Курил, от южной Камчатки повернул на восток. $28~\rm mas$ по 49-й параллели циклон покинул восточное полушарие с давлением в центре $996~\rm r\Pi a$. Циклон сопровождался усилением ветра до $15-20~\rm m/c$, волнением до $3-4~\rm m$.

27 мая на акваторию района по 32-й параллели с северо-восточной части Тихого океана переместился антициклон мощностью 1028 гПа. Он медленно двигался в западном направлении, разрушался. Самостоятельную циркуляцию утратил 29 мая вблизи 170-го меридиана, попав под воздействие более активного антициклона. Последний 27 мая вышел с Японского моря с давлением в центре 1024 гПа. Усиливаясь, двигался на восток вдоль 42-й параллели со скоростью 40 км/ч, 30 числа переместился в западное полушарие с давлением в центре 1028 гПа.

28 мая вблизи юго-восточного побережья Японии образовался фронтальный циклон с давлением в центре 1014 гПа. Он перемещался на северо-восток со скоростью 40-50 км/ч, 30 мая по 44-й параллели покинул восточное полушарие с давлением в центре 998 гПа. 30 мая в зоне действия циклона ветер усиливался до 15-18 м/с, волнение – до 2-3 м.

Циклон глубиной 1000 гПа, который образовался южнее Японии 30 мая, двигался на северо-восток со скоростью 20 км/ч, углублялся, в конце декады находился в районе с координатами 37° с. ш., 145° в. д. с давлением в центре 992 гПа. Циклон вызвал усиление ветра до 15-20 м/с, волнение до 3-4 м.

1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных реанализа NCEP/NCAR, приведены ниже на рис. 1-3–1-5. Анализ термобарических полей выполнен на базе средних за месяц карт барической топографии для стандартного изобарического уровня 500 гПа, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне 850 гПа. Аномалии рассчитаны относительно средних многолетних значений за период 1981–2010 гг.

Региональный обзор

В мае тропосфера над регионом оставалась очень теплой, в средней тропосфере сохранялось доминирование положительных аномалий геопотенциальных высот H_{500} . В зоне пологого обширного термобарического гребня в системе полярной высотной фронтальной зоны над Тихим океаном аномалии геопотенциальных высот H_{500} достигали +6...+9 дам. В системе арктического фронта над севером Охотского моря, Колымой сформировался термобарический гребень с аномалиями геопотенциальных высот H_{500} до +7 дам. Тропосфера над Восточной Арктикой тоже оставалась в зоне тепла. Относительный холод соответствовал высотной ложбине, установившейся над Восточной Азией, с осью от среднего течения Амура на юг до субтропических широт. В зоне влияния ложбины преобладали слабые отрицательные аномалии геопотенциальных высот H_{500} до -1 дам. Основной тропосферный холод был сосредоточен над Аляской, восточной частью Берингова моря и прилегающей частью океана. Над этими районами установилась стационарная депрессия, месячные аномалии геопотенциальных высот H_{500} достигали -3...-7 дам. К особенностям месяца можно отнести высокое напряжение фронтальной зоны над Тихим океаном, обусловленное усилением термобарического напряжения между перегретой тропической зоной океана и чрезвычайно обостренной полярной депрессией (рис. 1-3).

У земной поверхности над Тихим океаном доминировал мощный антициклон, в дополнение к сезонному обострению был мощнее обычного на 4 гПа. Алеутская депрессия, оставаясь над крайней восточной частью Алеутской гряды, была глубже климатической нормы примерно на 7 гПа. Над Восточной Азией сохранялась относительно активная циклоническая деятельность. Основной циклогенез, в соответствии с сезоном, наблюдался над средним течением Амура. Однако циклоническая деятельность была более активной и над бассейном Лены, кроме нижнего её течения, и над Хабаровским краем, и субтропической прибрежной частью. На это указывают отрицательные аномалии атмосферного давления до -1...-2 гПа. Над Восточной Арктикой атмосферное давление было повышенное, с незначительными отклонениями от нормы, фон давления выше нормы примерно на 1 гПа (рис. 1-4).

Японское море

В средней тропосфере Японское море находилось в передней части высотной ложбины с преобладанием умеренного западно-восточного переноса воздуха. Геопотенциальные высоты поверхности H_{500} над большей частью акватории незначительно отличались от нормы, лишь восточная часть – в зоне положительных аномалий геопотенциальных высот до +1...+2 дам.

У земной поверхности над морем сохранялось поле пониженного атмосферного давления. Фон атмосферного давления над большей частью моря незначительно ниже климатического, примерно на $1\ \Gamma\Pi a$.

Температура воздуха на уровне H_{850} (нижняя тропосфера) над морем была распределена от $+11~^{\circ}$ С на юге до $+3~^{\circ}$ С на севере. Для большей части акватории это состояние близко к норме, для северной части превышает норму на $1-2~^{\circ}$ С. В течение месяца температура воздуха над акваторией моря повысилась на $4-5~^{\circ}$ С.

Охотское море

В средней тропосфере большая часть акватории Охотского моря испытывала влияние высотного гребня, доминировали положительные аномалии геопотенциальных высот поверхности H_{500} до +3...+5 дам. Северо-запад акватории находился под воздействием барической ложбины, распространяющейся с Хабаровского края; воздушная масса над этой частью моря термически близка к норме.

У земной поверхности северо-западная часть моря находилась в зоне низкого атмосферного давления, фон атмосферного давления здесь ниже нормы на 1–2 гПа. Остальная часть акватории – в зоне повышенного атмосферного давления, фон которого близок к норме.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от +6 °C на юге до 0...-2 °C на севере, северо-востоке. Для всей акватории это состояние превышает норму на 1–2 °C. В течение месяца температура воздуха над морем повысилась на 4–6 °C.

Берингово море

В средней тропосфере восточная, большая часть акватории находилась под воздействием депрессионного поля, с аномалиями геопотенциальных высот поверхности H_{500} до -5 дам. Запад, северо-запад моря — в зоне передней части высотного гребня с аномалиями геопотенциальных высот H_{500} до +4 дам.

У поверхности земли в соответствии с высотным полем большая часть акватории была под влиянием обширной глубокой депрессии, фон атмосферного давления ниже нормы на 1–7 гПа. Незначительная западная, северо-западная часть акватории – в поле повышенного атмосферного давления, с фоном близким к норме.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем была распределена от -2 до -4 °C, наиболее холодный воздух был сосредоточен над центральной частью акватории. Это состояние для всего моря близко к норме. За месяц температура воздуха над морем повысилась на 2-6 °C.

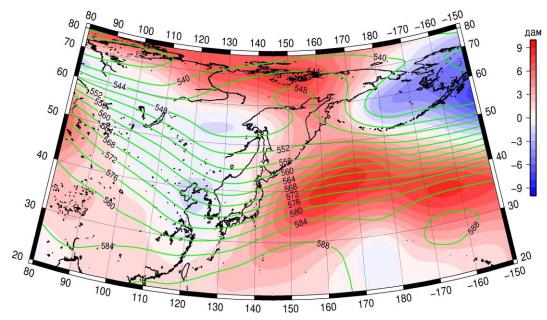


Рис. 1-3 Среднее поле H_{500} (изогипсы) и его аномалии (изополосы) в мае 2025 г. (дам)

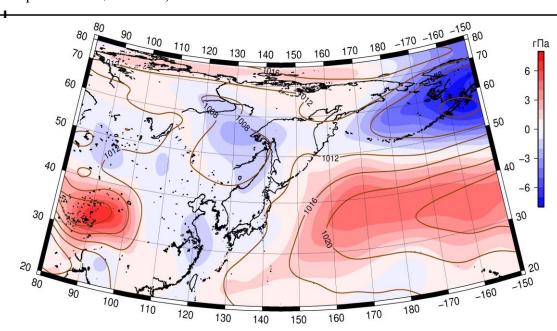


Рис. 1-4 Среднее поле атмосферного давления у поверхности земли (изобары) и его аномалии (изополосы) в мае 2025 г. (гПа)

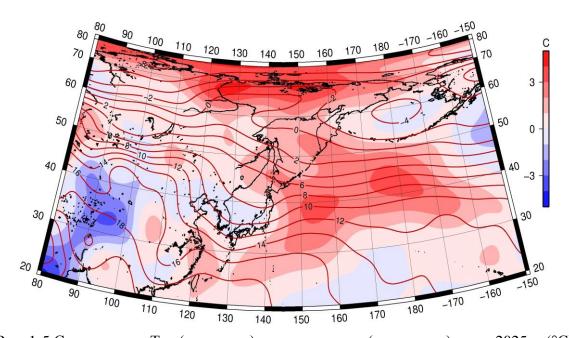


Рис. 1-5 Среднее поле T_{850} (изотермы) и его аномалии (изополосы) в мае 2025 г. (°С)

1.3 Региональные индексы циркуляции атмосферы

1.3.1 Зональный и меридиональный перенос воздуха над II е. с. р.

Характеристика основных воздушных течений в средней и нижней тропосфере за май 2025 г. выполнена на основе индексов атмосферной циркуляции, приведенных ниже в таблице и на рис. 1-6-1-8. В данном разделе для характеристики индексов принята следующая терминология: норма — ± 0.3 STD относительно нормы; незначительное отклонение от нормы — $\pm (0.4$ -0.7)STD; значительное отклонение от нормы — ≥ 2.0 STD. Аномалии рассчитаны относительно средних многолетних значений (нормы) за период 1981-2010 гг.

Японское море

В мае над Японским морем во всем слое тропосферы доминировал западно-восточный перенос воздуха (значения зональных индексов положительные). Его интенсивность во всем слое тропосферы была близка к норме (Кz равен 0,0STD и 0,2STD соответственно в средней тропосфере и у поверхности земли).

Интенсивность межширотного обмена в средней тропосфере над акваторией моря была близка к климатической (|Km| равен -0,1STD), но межширотный обмен был нарушен относительно нормы в пользу южной компоненты обмена (Km составлял 1,1STD); у поверхности земли интенсивность меридиональных движений воздуха незначительно превышала климатическую, но многолетний баланс между меридиональными составляющими остался близким к норме (|Km| равен 0,5STD, Km – 0,2STD). В среднем за месяц во всем слое тропосферы преобладали движения воздуха с юга (значения меридиональных индексов положительные).

Охотское море

Над Охотским морем во всем слое тропосферы наблюдалось преобладание движений воздуха с запада на восток (значения зональных индексов положительные), их интенсивность была близка к норме (Kz равен -0,3STD и 0,2STD соответственно в среднем слое и у поверхности земли).

Интенсивность межширотного обмена в средней тропосфере над Охотским морем была слабой, что определялось деградацией северной составляющей обмена (|Km| равен -0,8STD, Km-0,9STD). У поверхности земли межширотный обмен был незначительно интенсивнее обычного, что определялось усилением южной компоненты обмена (|Km| равен 0,7STD, Km-0,9STD). В среднем за месяц во всем слое тропосферы преобладали движения воздуха с юга (значения меридиональных индексов положительные).

Берингово море

Над Беринговым морем во всем слое тропосферы преобладал перенос воздуха с запада на восток (значения зональных индексов положительные), его интенсивность превышала климатическую (Кz равен 0,7STD и 1,0STD соответственно в средней тропосфере и у поверхности земли).

Интенсивность межширотного обмена во всем слое тропосферы над морем была близка к норме (|Km| составлял -0,1STD и -0,3STD соответственно в средней тропосфере и у поверхности земли). Межширотный обмен был нарушен относительно нормы в пользу движений воздуха с севера (Кт соответственно составлял -1,1STD и -1,2STD). В течение месяца во всем слое тропосферы сохранялось преобладание движений воздуха с севера (значения меридиональных индексов отрицательные).

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

	Уровень	Март			Апрель			Май		
Индекс*	(высота)	значение	ASTD**	STD**	значение	ASTD**	STD**	значение	ASTD**	STD**
Кz Ям		24377	0.4	4118	13309	-1.8	3723	15474	0.0	3428
Кz Ом		11378	1.6	3029	5815	-0.9	3291	7061	-0.3	2463
Кz Бм		8396	0.7	4673	10213	0.4	4725	7898	0.7	2969
Kz 35_50		21494	-0.2	3274	17321	-1.1	2775	17625	0.2	2112
Kz 50_70		6112	0.6	2364	7962	0.7	2040	5061	-0.5	1504
Kz 35_70		12848	0.3	1571	12135	-0.4	994	10378	-0.6	714
Кт Ям	1	-2644	0.6	1781	-201	0.6	1950	475	1.1	1479
Кт Ом		2692	1.8	1385	583	0.3	1586	930	0.9	1795
Кт Бм	500 гПа	1199	-0.6	1334	-1013	-1.1	1228	-1713	-1.1	1305
Km 35_50	300 IIIa	-292	0.3	816	-712	-0.1	689	-512	0.8	414
Km 50_70		-448	-0.3	492	-270	0.2	497	-569	-0.5	341
Km 35_70		-328	0.1	515	-413	0.1	445	-489	0.1	243
Кт Ям		3984	-0.6	2231	2107	-0.6	1607	2712	-0.1	1290
Кт Ом		5112	1.9	1223	2016	-0.6	1292	1987	-0.8	1396
Кт Бм		4407	0.0	1881	2709	-0.3	1472	3343	-0.1	1521
Km 35_50		5066	-0.1	1024	4933	1.6	637	3444	0.1	657
Km 50_70		4971	0.6	1169	3700	0.4	779	3071	-0.1	667
Km 35_70		4943	0.4	801	4299	1.3	563	3263	0.1	528
Кz Ям		1582	-0.3	1035	2127	-1.3	1201	3752	0.2	1188
Кz Ом		-989	0.5	1295	-1087	-0.6	1379	763	0.2	824
Кz Бм		-1073	0.8	2737	985	0.4	2355	1573	1.0	1358
Kz 35_50		2771	0.1	1277	2573	-0.5	1177	3744	0.8	1117
Kz 50_70		-877	0.6	1413	-274	0.7	1263	-812	0.1	873
Kz 35_70		668	0.6	784	1056	0.5	658	1118	0.6	527
Кт Ям		-2000	1.0	693	1088	1.2	887	973	0.2	563
Кт Ом		-2002	0.5	1243	635	1.0	929	1293	0.9	745
Кт Бм	1000 гПа	-720	-0.3	1027	-1186	-0.9	875	-1031	-1.2	652
Km 35_50	10001114	-774	-0.1	533	-198	-0.8	418	357	0.1	234
Km 50_70		-870	0.1	364	-233	0.5	313	-406	-1.2	209
Km 35_70		-774	0.0	336	-186	-0.2	307	-46	-0.8	159
Кт Ям		2739	-0.9	953	1688	0.8	608	1827	0.5	518
Кт Ом		3369	-0.6	1838	1157	-0.8	784	2282	0.7	695
Кт Бм		2644	-0.4	1073	2366	-0.1	1036	1875	-0.3	908
Km 35_50		2493	-0.9	542	2756	2.7	278	2291	0.8	299
Km 50_70		2568	-0.4	563	2257	0.3	442	2213	0.8	334
Km 35_70		2473	-0.7	463	2464	1.4	299	2234	1.0	278

^{*} Описание индексов приведено в разделе «Терминология».

Умеренные широты между 35° и 50° с. ш. над II е. с. р.

В зоне умеренных широт между 35° и 50° с. ш. над II е. с. р. перенос воздуха с запада на восток оставался преобладающим во всем слое тропосферы (зональные индексы положительные). Его интенсивность в среднем слое тропосферы была близка к норме, в нижнем слое — превышала норму (Kz равен 0.2STD и 0.8STD в средней тропосфере и у поверхности земли соответственно).

^{**} Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1981–2010 гг.

Интенсивность меридиональных движений воздуха в средней тропосфере над указанной широтной зоной была близка к средней многолетней, но многолетний баланс между меридиональными составляющими нарушен в пользу южной компоненты обмена (|Km| равен 0,1STD, Km – 0,8STD). В нижнем слое тропосферы межширотный обмен был интенсивным, но многолетний баланс между меридиональными составляющими близок к климатическому (|Km| равен 0,8STD, Km – 0,1STD). В среднем за месяц в средней тропосфере сохранилось доминирование движений воздуха с севера (значение меридионального индекса отрицательное), в нижнем слое установилось преобладание движений с юга (значение индекса положительное).

Широтная зона 50-70° с. ш. над II е. с. р.

В широтной зоне $50-70^{\circ}$ с. ш. над II е. с. р. в средней тропосфере преобладал перенос воздуха с запада на восток (значение зонального индекса положительное), его интенсивность была незначительно слабее нормы (Kz составлял -0,5STD). У поверхности земли преобладал перенос с востока на запад (значение зонального индекса отрицательное), его интенсивность близка к климатической (Kz составлял 0,1STD).

Интенсивность межширотного обмена в средней тропосфере над указанной широтной зоной была близка к норме (|Km| равен -0,1STD), многолетний баланс между меридиональными составляющими незначительно нарушен в пользу северной компоненты обмена (Кт составлял -0,5STD). У поверхности земли интенсивность меридиональных движений воздуха была повышенной (|Km| равен 0,8STD), что определялось активными вторжениями воздуха с севера (Кт составлял -1,2STD). Во всем слое тропосферы в среднем за месяц движения воздуха с севера доминировали над движениями с юга (значения меридиональных индексов отрицательные).

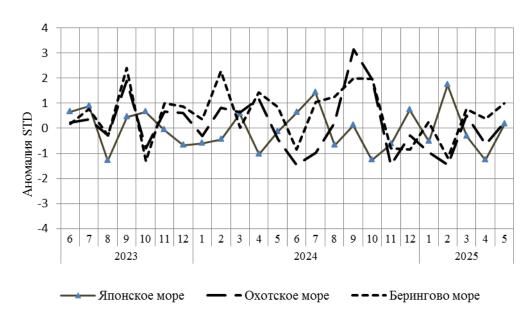


Рис. 1-6 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Kz) в нижней тропосфере над дальневосточными морями

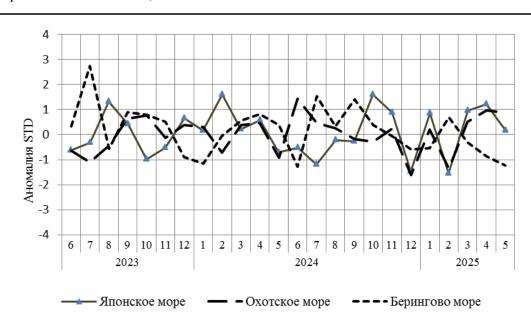


Рис. 1-7 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кт) в нижней тропосфере над дальневосточными морями

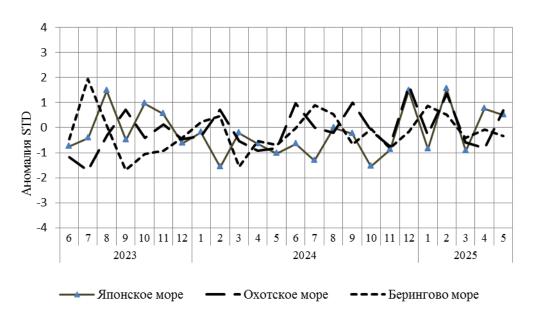


Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Km|) в нижней тропосфере над дальневосточными морями

1.3.2 Индекс засушливости Педя S для станций Приморского и Хабаровского краёв 1

Приморский край	Март	Апрель	Май
Анучино	1.1	-0.3	0.7
Астраханка	1.1	0.7	0.9
Богополь	0.1	-1.4	1.8
Владивосток	1.2	-0.3	1.1
Дальнереченск	-0.6	2.3	0.6
Пограничный	0.7	-0.8	1.3
Посьет	1.9	0.7	1.5
Преображение	1.4	-2.0	0.0
Рощино	0.1	2.5	0.2
Рудная Пристань	0.1	-0.2	2.0
Сосуново	-1.1	0.2	1.7
Терней	0.4	0.2	1.9
Тимирязевский	0.4	0.1	1.4
Турий Рог		0.3	
Хабаровский край	Март	Апрель	Май
Аян	-0.4	0.5	-5.1
Гвасюги	-0.6	1.9	0.7
Екатерино-Никольское	-0.4	1.0	0.0
Им. Полины Осипенко	-1.4	0.7	-3.3
Комсомольск-на-Амуре	-1.4	1.2	-0.4
Нелькан	-0.8	3.0	0.1
Николаевск-на-Амуре	-0.1	2.6	1.7
Охотск	-1.1	0.7	-0.9
Сковородино	-0.5	2.4	-0.2
Софийский Прииск	-4.7	1.4	0.3
Сутур	-1.4	-0.3	0.0
Тумнин	-1.0	1.0	0.3
Урми	-0.9	0.7	1.0
Усть-Нюкжа	0.2	2.2	1.7
Хабаровск_	-1.9	1.3	-0.4
Хуларин	-1.8	1.1	0.3
Чекунда	-2.1	-0.8	0.3
Чумикан	-1.7	-0.3	-1.7

Положительные значения индекса соответствуют засушливым условиям, отрицательные – условиям достаточного (избыточного) увлажнения при пониженном фоне температур. Для месячных значений S принято считать, что

- если 1<S<2, то засуха слабая, если -1>S>-2, то увлажнение слабое;
- если 2<S<3, то засуха умеренная, если -2>S>-3, то увлажнение умеренное;
- если S>3, то засуха сильная, если S<-3, то увлажнение сильное.

-

¹ См. раздел «Терминология бюллетеня».