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Introduction
Hydrochemical properties of sea water allow better understanding of hydrophysical processes such

as gas exchange on air/seawater interface, circulation and convection, behavior of the mesoscale
structures like eddies. Hydrochemical parameters are often used as connective tissue between biological
and physical processes. In some cases they can also indicate geological processes on sea floor.

Some hydrochemical properties of the Japan/East Sea have been studied (Kim et al., 1992;
Chen et al., 1995; Chen et al., 1996; Kim, 1997; Tishchenko et al., 1998; Riser et al., 1999; Oh et al.,
1999). Except oxygen, the hydrochemical parameters (nutrients, pH, alkalinity) of the Japan/East Sea are
still not well investigated. Oceanographic survey of the Japan/East Sea was carried out in June-August,
1999 by R/V “Roger Revelle” and “Professor Khromov”. The hydrochemical and CTD data (dissolved
oxygen, nutrients, pH and alkalinity) were collected for 200 stations along with CTD hydrographic data.
Scheme of the stations is presented in Fig. 1. Our consideration will be focused on general scope of
features of the hydrochemical structure of the Japan/East Sea.
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Fig. 1. Scheme of the stations of the R/V “Roger Revelle” (June 24 – July 17, 1999) and Professor Khromov
(July 22 – August 13, 1999)
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Methods and Data
A sample from each Niskin bottle has been analyzed on dissolved oxygen and nutrients (nitrate,

nitrite, silicate, and phosphate) using equipment provided by Ocean Data Facility of Scripps Institution of
Oceanography. Oxygen was run using a Dosimat UV-endpoint detection automatic titration system.
Estimated from replicates precision of oxygen analysis was generally good to 0.05 ml/l. Nutrients were
measured using a Technicon AA-II CFA system with a PC based acquisition system. Estimated from
replicates precision of these data was generally good to about 1% of the measured values. Equipment for
total alkalinity (TA) and pH was provided by the Pacific Oceanological Institute (Professor Andrew
Dickson kindly lent thermostat). As a rule fifteen bottles have been analyzed on pH and TA for each
station. TA was measured by means of Brujewicz's method (Brujewicz, 1944). Determination of TA is
direct colorimetric titration by hydrochloric acid in an open system using a mixed indicator (methylene
blue and methyl red). The titration is carried out under flow of CO2-free air (or nitrogen). The change of
the sample color from green to light-pink at the equivalence point is detected visually. The acid (∼0.02 N)
was daily standardized by Dickson's CRM. Estimated precision was about 0.2%
(4 ~ 5 µmol kg-1). pH measurements were carried out by potentiometric method using electrochemical
cell without liquid junction (Tishchenko and Pavlova, 1999). Uncertainty of the pHT measurements was
about ±0.004 pH unit. Dissolved inorganic carbon (DIC), CO2 partial pressure (pCO2) have been
calculated from measured pH and TA by generally accepted method (Millero, 1995).

Results and Discussion
For establishment of main features of the hydrochemical structure of the Japan/East Sea on a large-

scale, we mapped chemical fields on isopycnal surfaces σθ =27.10, σθ =27.27, σθ =27.31, and σθ =27.34.
Choice of these isopycnal surfaces is stipulated by features of the oxygen and salinity profiles in northern
part of the sea (Fig. 2 and Table 1).

T a b l e  1

Characteristics of isopycnal layers

N Layer P, db θ, °C S, psu σθ O2, µM/kg
1 O2 max – S min 186 2.965 34.035 27.11 283.8
2 O2 max – S min 184 1.378 34.066 27.27 292.1
3 S max 337 0.904 34.075 27.31 165.0
4 O2 max 904 0.847 34.068 27.34 221.4

Note: O2 max – S min – first type of dissolved oxygen maximum related with Japan/East Sea Intermediate Water.
 O2 max – S min – first type of dissolved oxygen maximum related with Japan/East Sea Intermediate Water.
 S max – layer of the salinity maximum in the northern part of the Japan/East Sea.
 O2 max – weak deep dissolved oxygen maximum in the northern part of the Japan/East Sea.

Isopycnals σθ =27.10 and σθ =27.27 (Fig. 2a, b) are considered as mean values of potential densities
for two types of subsurface oxygen maximum and salinity minimum (Japan/East Sea Intermediate
Water). The layers with higher values of temperature (σθ =27.10 ) were situated in the east part of the sea
on periphery of large anticyclonic eddy with center on 40.5°N, 131.5°E and near Yamato Bank. The
second type of colder layers with maximum of oxygen (σθ =27.27) was observed near Yamato Bank and
in the area of the Tsushima Current near Tsugaru Strait (40-42°N). Probably, these layers are formed on
the subarctic front in winter by means of convection and subduction (Senjyu, 1999). In the northern part
of the Japan/East Sea high salinity values exceeding 34.07 have been found in the intermediate layer (Fig.
2c, d). The potential density of core of the layer varied from 27.27 to 27.32 of σθ .with mean value around
27.31 σθ. This water appeared between fresh upper layer and less salty Deep Water as modified
“remnant” of subtropical origin surface water. Characteristics of this layer change in wide range.
Therefore intermediate salinity maximum is not a separate water mass with one region of formation.
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Fig. 2. Profiles of dissolved oxygen (a) and potential temperature-salinity diagram (b) for intermediate water.
Profiles of salinity (c) and potential density-salinity diagram (d) for salinity maximum in the north part of the sea.

Profiles of dissolved oxygen (e) and potential density-dissolved oxygen diagram (f) for weak oxygen maximum in the
upper part of the deep water (north part of the sea)

Figs. 3 and 4 show distribution of oxygen and silicate concentrations on isopycnal surfaces. For
comparison, we plotted maps of these parameters on different horizontal levels (Figs. 5 and 6). The same
maps have been fulfilled for all hydrochemical properties. Because of fields of different chemical tracers
have a similar behavior, therefore, here we demonstrate the maps of oxygen and silicate concentrations,
only. Hydrochemical properties distribution shows (Fig. 3, 4, σθ =27.31) two areas with oxygen
maximum and silicate minimum. The first of them was located approximately in the central part of Japan
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Basin cyclonic gyre, second - in western part of cold sector. Apparently, it means that this isopycnal was
ventilated in these two zones in previous winter. The zone located to the south of Vladivostok (41°-42°N)
is known as area of formation of the upper portion of the Deep Water (Senjyu and Sudo, 1994). The
second zone between warm and salty waters of the Tsushima Current and cold and fresh Liman Current
was also considered as an area deep water masses formation (R/V “Vityaz” report, 1953). Convection can
be the basic process of ventilation of this layer. In the first zone convection is caused by intensive winter
cooling and evaporation. In the second zone the most probable source of convection is cooling of salty
Tsushima Current waters which enter the cold sector as meanders, jets or eddies (Ponomarev et al., 1996).
For most of the stations within the Japan Basin a weak maximum of oxygen concentration have been
revealed at potential densities 27.338÷27.345 (mean value is about 27.34 σθ ). At separate stations (for
example, St. 155) this layer appears as oxystad.
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Fig. 3. Distribution of the dissolved oxygen on isopycnal surfaces: 27.21, 27.27, 27.31 and 27.34
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Fig. 4. Distribution of the inorganic silicate on isopycnal surfaces 27.21, 27.27, 27.31 and 27.34

The significant anomalies (increase of oxygen and decrease of silicate concentrations) in chemical
fields have been found at 500 and 1000 m (Figs. 5, 6). The anomalies located around ϕ=40.5°N, λ=132°E
and ϕ=41.26°N, λ=134°E practically disappeared on isopycnal surfaces 27.31 σθ and 27.34 σθ (Figs. 3, 4).
In other words, they are caused by strong dynamic processes which result in deepening of isopycnal
surfaces. We suggest, that anticyclonic eddies produce these anomalies. The suggestion is supported by
infrared images obtained from NOAA satellites on 08/07/99 and 08/10/99 and sections presented on
Fig. 8.

The anomaly located around ϕ=42°N, λ=138°E we call as vertical mixing area. It is revealed on
different levels and isopycnal surfaces (27.31 and 27.34 σθ) as well. Existence of the feature on both,
horizontal levels and isopycnal surfaces is evidence of diapycnal mixing. Mechanism of diapycnal mixing
also can include other processes mentioned above: (1) heat exchange between two waters (warm/saline
and the cold/fresh) results in contrary moving of them which gives mixing; (2) mixing forms more dense
water due to volume contraction (cabbeling); (3) dense parcels spreading into deep layers which have
neutral buoyancy (Tishchenko et al., 2001).

Another important feature of nutrients and oxygen distributions on isopycnal surfaces is that,
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nutrients concentrations are increasing and oxygen concentrations are decreasing towards the southeastern
part of the Japan/East Sea. It looks as if the “age” of water grows along isopycnal surfaces in the given
direction. Explanation of the phenomena is that the isopycnal surfaces are deepening in this direction
(Fig.8). Owing to smooth changing of the nutrients concentrations it is not easy to distinguish polar front
between south and north parts of the
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Fig. 5. Distribution of dissolved oxygen (µmol/kg) at 10 m, 150 m, 500 m and 1000 m depth
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Fig. 8. Depths of the isopycnic surfaces: 27.21, 27.27, 27.31 and 27.34

Japan/East Sea by means of nutrient or carbonate system species. From all chemical parameters
dissolved oxygen is the best for this task. Due to photosynthesis, nutrients are consumed from shallow
levels. Concentrations of silicate decrease to less than 1 µmol/kg, phosphate – to less than 0.1 µmol/kg
and nitrate concentrations reach undetectable level. However, there are anomalies of relatively high
concentrations of nutrients on the shallow layers (for example, silicate on 10 m surface, Fig. 6). Nitrate
and phosphate have a similar anomalies. Anomalies along coasts of South Korea can be explained by
upwelling. Apparently, others are results of subsurface mixing, but nature of this is unclear.

CO2 partial pressure have been calculated from measured pH and alkalinity using constants
recommended by Millero (1995). Distribution of pCO2 is shown on Fig. 9. The figure clearly
demonstrates that most of the Japan/East Sea is sink for atmospheric CO2. It is effect of photosynthetic
activity in the summer. There are two areas around 41°N, 134°E and 41°N, 131°E where pCO2 of surface
sea water exceeds atmospheric CO2 partial pressure, which is about 355 µatm. They are situated closely
to anticyclonic eddies. Two possible processes are responsible for high pCO2. One of them is subsurface
mixing by means of eddies activity which supplies CO2-rich water on surface. Another is heating of
surface water (Tishchenko et al., 1998).
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Fig. 9. Distribution of CO2 partial pressure (µatm.) on the surface of the Japan/East Sea

Very important feature of the hydrochemical structure of the Japan/East Sea has been found on the
section across stations 130-140 (latitude is about 46°N). Noticeable decreasing of dissolved oxygen and
increasing of DIC, pCO2 and nutrients concentrations has been found near bottom at 800÷1200 m depth
along continental slope (Fig. 10). The similar pattern have been obtained in the next cruise of R/V
“Professor Khromov” implemented on February 22 – March 23, 2000. Therefore, the decreasing of
oxygen content and increasing of DIC, pCO2 and nutrients concentrations are independent from the
seasons. Additionally, noticeable ammonium concentrations (0.14 µmol/kg) and detectable amount of the
nitrite have been found near seafloor in winter cruise of R/V “Professor Khromov” (the casts were taken
to within 5 meters of the bottom of the sea). Before 200÷100 m to bottom, transmissivity declined on the
stations which have such anomalies. Obviously this anomaly is connected with geological processes. The
simplest explanation is that methane venting area is here. Due to early diagenesis of organic matter in the
sediments, pore water becomes reached by ammonium (few mmol/kg), phosphate (few hundreds of
µmol/kg), silicate (more than 1mmol/kg), TA (few tens of mmol/kg), and high CO2 concentrations (pCO2
is about 1 atm.) (Ingle et al., 1990; Tishchenko, et al., 2000b). Methane bubbling passing through
sediments, draws out pore water into seawater forming continual flow of nutrients, TA and CO2. At the
same time ammonium must be oxidized to nitrate by dissolved oxygen in seawater. This reaction is going
by means of microbiological activity and its intermediate product is nitrite. Additionally, oxygen would
be consumed by microbiological oxidation of methane and ammonium. For checking of the hypothesis
future investigations are necessary.

Our preliminary consideration of the hydrochemical structure of the Japan/East Sea can be
summarized as follows.
1) Oxygen concentrations are decreasing and nutrients concentrations are increasing on isopycnal

surfaces towards the southeastern part of the Japan/East Sea.
2) There are hydrochemical anomalies on horizontal surfaces which practically disappeared on

isopycnal surfaces. These anomalies are produced by strong dynamic structures like mesoscale
eddies.

3) There is hydrochemical anomaly located around ϕ=42°N, λ=138°E caused by diapycnal mixing. This
area is characterized by intense vertical mixing and may be suggested as possible source of the Japan
Sea Proper Water ventilation.

4) Most of the Japan/East Sea is sink for atmospheric CO2.
5) Due to biogeochemical activity noticeable decreasing of dissolved oxygen and increasing DIC, pCO2
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and nutrients concentrations have been found near bottom at 800÷1200 m along continental slope
around 46° latitude. It was suggested that methane bubbling passing through sediments, draws out
pore water reached into seawater forming continual flow of nutrients, TA and CO2 from sediments
into seawater. Oxygen would be consumed by microbiological oxidation of methane and ammonium.
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