Министерство природных ресурсов и экологии Российской Федерации Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ДАЛЬНЕВОСТОЧНЫЙ РЕГИОНАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ ИНСТИТУТ»

(ФГБУ «ДВНИГМИ»)

Аналитический материал

AM.2023.5

Экспедиционные исследования с судов ФГБУ ДВНИГМИ в заливе Петра Великого Японского моря в 2023 году

РЕФЕРАТ

В обзоре представлено описание рейсов научно-исследовательских судов ФГБУ ДВНИГМИ в заливе Петра Великого. Приведены схемы полигонов и расположение точек наблюдений за загрязнением водной толщи и донных отложений в системе ОГСН. Указаны перечни измеряемых параметров и объёмы полученных данных.

Авторы:

Круц А.А.. (нач. РЦОД ДВ, ФГБУ «ДВНИГМИ»)

Дата составления: 17.01.2024

Оглавление

Введение	4
Площадные океанографические съёмки в заливе Петра Великого	∠
Наблюдения по программе ОГСН	9
Заключение	11
Заключение	11

Введение

В 2023 г. судах ФГБУ «ДВНИГМИ» выполняли на комплексные океанографические научные исследования в Японском море в рамках Плана научноисследовательских и технологических работ НИУ Росгидромета на 2023 г. Исследования выполняли в зал. Петра Великого по следующим основным направлениям: «Океанографические исследования» и «Наблюдения по программе ОГСН». Всего в течение года по указанным направлениям выполнены две океанографические экспедиции, состоявшие из двух экспедиционных рейсов, а также проведены регулярные наблюдения по программе ОГСН.

Площадные океанографические съёмки в заливе Петра Великого

Детальное изучение гидрологического режима совместно с проведением мониторинга состояния загрязнения морской среды в зал. Петра Великого является актуальной задачей. Для оценки экологических последствий загрязнения морской среды и выявления локальных и глобальных антропогенных эффектов проводят долгосрочные наблюдения за физико-химическими и биологическими процессами в зонах интенсивной промышленной и хозяйственной деятельности и в фоновых районах исследуемой акватории.

Наблюдения выполняются по системе специально ориентированных океанографических разрезов, положение которых определяется данными о водообмене с глубоководной частью Японского моря, циркуляцией его вод, особенностями гидрологической структуры и стоком рек.

Кроме того, проводят многосерийные наблюдения в специально выбранных районах для исследования короткопериодной изменчивости гидрологических и гидрохимических параметров вод, а также для калибровки моделей циркуляции вод залива.

Полученная информация используется для разработки математической модели циркуляции вод в зал. Петра Великого и для принятия эффективных управленческих решений, включая обеспечение экологической безопасности и защиты населения от чрезвычайных ситуаций техногенного характера.

Для достижения вышеуказанных целей в 2023 г. были выполнены две океанографические съемки в зал. Петра Великого. Первую съемку выполняли на НИС «Профессор Мультановский» (21 – 27 мая). Вторая съемка выполнена на НИС «Павел Гордиенко» в период 07 – 18.09.2023 г. (рисунки 1, 2, 3, 4).

Рисунок 1 – НИС «Профессор Мультановский»

Рисунок 2-HИС «Павел Гордиенко»

Целью экспедиционных исследований является получение натурных данных для реализации математической модели бассейна с заранее известным рельефом дна контурами береговых очертаний, заполненного бароклинной жидкостью, для расчёта уровенной поверхности и составляющих скорости морских течений в каждом из узлов ортогональной сетки. Реализация этих задач была необходима для последующего определения особенностей структуры и циркуляции вод в заливе Петра Великого с целью информационного гидрометеорологического обеспечения проектирования, строительства и эксплуатации инженерно-технических сооружений, инфраструктуры отдыха и туризма, развития производства марикультуры.

Исходя из поставленной цели, в рейсе выполнены следующие работы:

- Океанографическая съёмка на сети станций в указанном районе с измерениями температуры и солёности морской воды СТD-зондом «RBR» от поверхности до дна, но не более глубины 200 м;
- Ежечасные метеорологические наблюдения по всему океанографическому полигону за весь период первого этапа рейса.

Виды и количество наблюдений, выполненных во время съемок в зал. Петра Великого в мае и сентябре 2023 г., представлены в таблице 1.

Таблица 1 — Виды и количество проведенных наблюдений в зал. Петра Великого в мае и сентябре 2023 г.

Виды наблюдений	Количество
CTD-зондирование	307 профилей
Метеорологические наблюдения	235 наблюдений

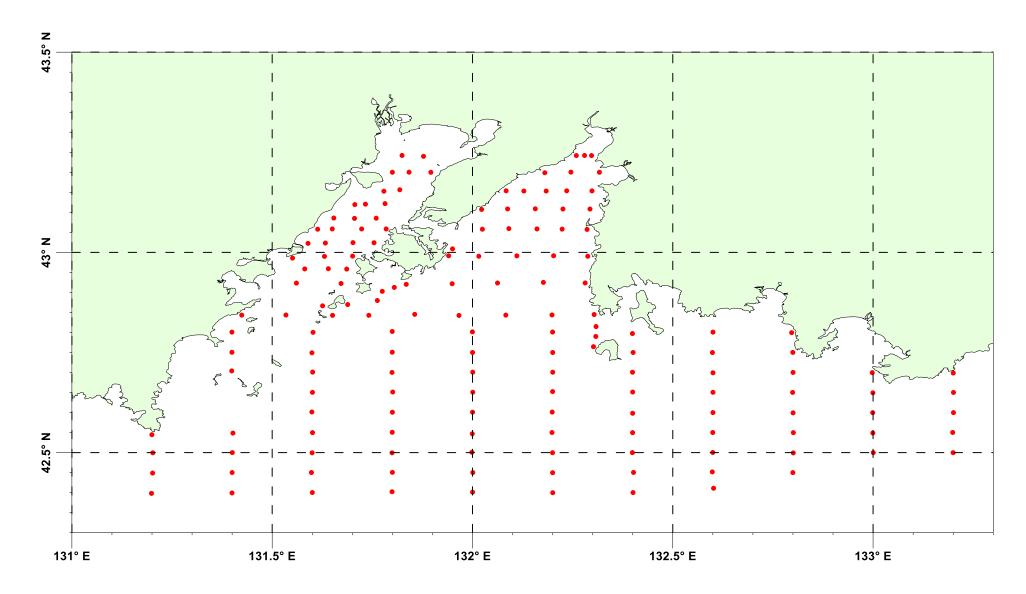


Рисунок 3 — Схема района работ НИС «Профессор Мультановский» в зал. Петра Великого (май 2023 г.)

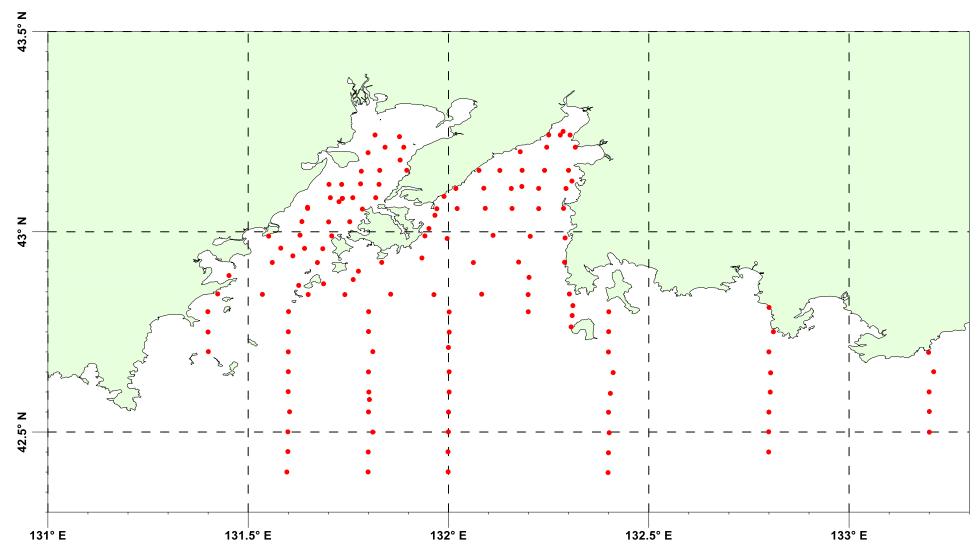


Рисунок 4 — Схема района работ НИС «Павел Гордиенко» в зал. Петра Великого (сентябрь 2023 г.)

Наблюдения по программе ОГСН

Данные наблюдений по программе ОГСН в зал. Петра Великого, наряду с детальным изучением гидрологического режима, используются для оценки современного экологического состояния морской среды под влиянием промышленной и хозяйственной деятельности в густонаселенных районах южного Приморья, определения тенденции его развития, а в случае отрицательной динамики своевременного принятия необходимых мер для предотвращения негативных последствий.

В 2023 г. наблюдения по программе ОГСН проводили с «Павел Гордиенко» в июне и сентябре. Район исследований показан на рисунке 1.5.

Экспедиционные работы на акватории залива Петра Великого в по программе ОГСН осуществлены в рамках соглашения № 01/2023 от 05.04.2023 г. «О совместном ведении мониторинга загрязнения морской среды» между ФГБУ «ДВНИГМИ» и ФГБУ «Приморское УГМС».

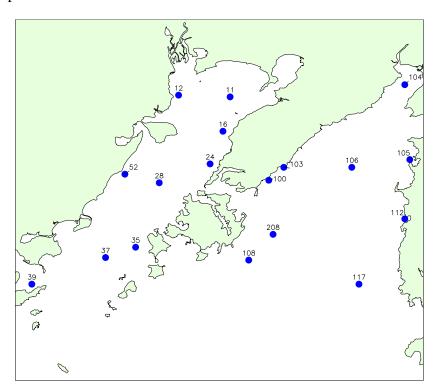


Рисунок 1.5 – Схема контрольных точек ОГСН в заливе Петра Великого

Программа работ включала в себя исследование гидрохимического режима и уровня загрязнения вод и донных отложений на акватории зал. Петра Великого.

Для оценки загрязнения морской среды анализировали общее содержание нефтяных углеводородов (ОСНУ), металлов (МЕ), фенолов и детергентов (таблица 1.2).

Гидрохимические исследования включали определение содержания растворенного кислорода, концентраций водородных ионов (рН), БПК₅, нитритного, нитратного, аммонийного и общего азота, общего и минерального фосфора и кремния.

Кроме того, выполняли наблюдения за гидрометеорологическими параметрами: температурой и соленостью воды, скоростью и направлением ветра, атмосферным давлением, температурой и влажностью воздуха.

Таблица 2 – Наблюдения, выполненные по программе ОГСН (21.05 – 18.09.2023 г.)

№	Виды наблюдений		Объем выполненных работ
			(количество проб)
1	Океаногра	фическая станция	30
		Морская вода	·
2	Температура морско	ой воды	60
3	Соленость		60
4	Растворенный кисло	ррод	60
5	рН		60
6	Фосфор минеральнь	ій	60
7	Фосфор общий		60
8	Фосфор органически	ий	60
9	Кремний		60
10	Нитриты		60
11	Нитраты		60
12	Азот аммонийный		60
13	Азот общий		60
14	Азот органический		60
15	БПК5		60
16	Взвешенные вещест	ва	60
17	Нефтяные углеводор	ооды	60
18	Фенолы		60
19		Свинец	60
20		Медь	60
21		Цинк	60
22	Моточил	Железо	60
23	-Металлы	Кадмий	60
24		Никель	60
25		Марганец	60
26		Ртуть	60

27 A	ПАВ		60				
	Донные отложения						
28 H	ефтяные углеводород		22				
29 Ф	енолы		22				
30		Кобальт	22				
31		Свинец	22				
32		Медь	22				
33		Цинк	22				
34 M	І еталлы	Железо	22				
35		Кадмий	22				
36		Никель	22				
37		Хром	22				
38		Марганец	22				
39		Ртуть	22				

Океанографические наблюдения, отбор проб морской воды и донных отложений выполняли с использованием серии батометров Niskin и дночерпателя Ван Вина. Отбор проб и обработку полученной информации выполняли в соответствии с методиками, принятыми в Росгидромете. Материалы наблюдений и лабораторных анализов занесены в специальную базу данных, содержащую информацию о гидрологических и метеорологических параметрах и данные о загрязнении морской среды. Виды и количество выполненных наблюдений представлены в таблице 2.

Заключение

Таким образом, запланированные на 2023 г. экспедиционные работы выполнены. Полученные в ходе двух экспедиционных рейсов данные океанографических наблюдений переданы в РЦОД ФГБУ «ДВНИГМИ» и Гидрографическую службу штаба ТОФ.

Пробы воды и донных отложений частично проанализированы на борту судна, частично переданы в береговую лабораторию МЗПВиП ФГБУ «Приморское УГМС» для дальнейшей обработки и анализов. Заключительные отчеты о гидрологическом и гидрохимическом режимах, а также об экологическом состоянии морской среды в районах исследований будут представлены заказчикам работ и другим заинтересованным потребителям.